MicroRNA (miRNA) expression profiles for lung cancers were examined to investigate miRNA's involvement in lung carcinogenesis. miRNA microarray analysis identified statistical unique profiles, which could discriminate lung cancers from noncancerous lung tissues as well as molecular signatures that differ in tumor histology. miRNA expression profiles correlated with survival of lung adenocarcinomas, including those classified as disease stage I. High hsa-mir-155 and low hsa-let-7a-2 expression correlated with poor survival by univariate analysis as well as multivariate analysis for hsa-mir-155. The miRNA expression signature on outcome was confirmed by real-time RT-PCR analysis of precursor miRNAs and cross-validated with an independent set of adenocarcinomas. These results indicate that miRNA expression profiles are diagnostic and prognostic markers of lung cancer.
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Activation of the EGFR, KRAS, and ALK oncogenes defines 3 different pathways of molecular pathogenesis in lung adenocarcinoma. However, many tumors lack activation of any pathway (triple-negative lung adenocarcinomas) posing a challenge for prognosis and treatment. Here, we report an extensive genome-wide expression profiling of 226 primary human stage I-II lung adenocarcinomas that elucidates molecular characteristics of tumors that harbor ALK mutations or that lack EGFR, KRAS, and ALK mutations, that is, triple-negative adenocarcinomas. One hundred and seventy-four genes were selected as being upregulated specifically in 79 lung adenocarcinomas without EGFR and KRAS mutations. Unsupervised clustering using a 174-gene signature, including ALK itself, classified these 2 groups of tumors into ALK-positive cases and 2 distinct groups of triplenegative cases (groups A and B). Notably, group A triple-negative cases had a worse prognosis for relapse and death, compared with cases with EGFR, KRAS, or ALK mutations or group B triple-negative cases. In ALK-positive tumors, 30 genes, including ALK and GRIN2A, were commonly overexpressed, whereas in group A triple-negative cases, 9 genes were commonly overexpressed, including a candidate diagnostic/therapeutic target DEPDC1, that were determined to be critical for predicting a worse prognosis. Our findings are important because they provide a molecular basis of ALK-positive lung adenocarcinomas and triple-negative lung adenocarcinomas and further stratify more or less aggressive subgroups of triple-negative lung ADC, possibly helping identify patients who may gain the most benefit from adjuvant chemotherapy after surgical resection. Cancer Res; 72(1); 100-11. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.