Background Previous attempts to characterise the burden of chronic respiratory diseases have focused only on specific disease conditions, such as chronic obstructive pulmonary disease (COPD) or asthma. In this study, we aimed to characterise the burden of chronic respiratory diseases globally, providing a comprehensive and up-to-date analysis on geographical and time trends from 1990 to 2017.Methods Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we estimated the prevalence, morbidity, and mortality attributable to chronic respiratory diseases through an analysis of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLL) by GBD super-region, from 1990 to 2017, stratified by age and sex. Specific diseases analysed included asthma, COPD, interstitial lung disease and pulmonary sarcoidosis, pneumoconiosis, and other chronic respiratory diseases. We also assessed the contribution of risk factors (smoking, second-hand smoke, ambient particulate matter and ozone pollution, household air pollution from solid fuels, and occupational risks) to chronic respiratory disease-attributable DALYs.Findings In 2017, 544•9 million people (95% uncertainty interval [UI] 506•9-584•8) worldwide had a chronic respiratory disease, representing an increase of 39•8% compared with 1990. Chronic respiratory disease prevalence showed wide variability across GBD super-regions, with the highest prevalence among both males and females in high-income regions, and the lowest prevalence in sub-Saharan Africa and south Asia. The age-sex-specific prevalence of each chronic respiratory disease in 2017 was also highly variable geographically. Chronic respiratory diseases were the third leading cause of death in 2017 (7•0% [95% UI 6•8-7•2] of all deaths), behind cardiovascular diseases and neoplasms. Deaths due to chronic respiratory diseases numbered 3 914 196 (95% UI 3 790 578-4 044 819) in 2017, an increase of 18•0% since 1990, while total DALYs increased by 13•3%. However, when accounting for ageing and population growth, declines were observed in age-standardised prevalence (14•3% decrease), agestandardised death rates (42•6%), and age-standardised DALY rates (38•2%). In males and females, most chronic respiratory disease-attributable deaths and DALYs were due to COPD. In regional analyses, mortality rates from chronic respiratory diseases were greatest in south Asia and lowest in sub-Saharan Africa, also across both sexes. Notably, although absolute prevalence was lower in south Asia than in most other super-regions, YLLs due to chronic respiratory diseases across the subcontinent were the highest in the world. Death rates due to interstitial lung disease and pulmonary sarcoidosis were greater than those due to pneumoconiosis in all super-regions. Smoking was the leading risk factor for chronic respiratory disease-related disability across all regions for men. Among women, household air pollution from solid fuels was the predominant risk factor for chronic respiratory diseases in sou...
Summary Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people...
Summary Background Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories—government, out-of-pocket, and prepaid private health spending—and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings Between 1995 and 2016, health spending grew at a rate of 4·00% (95% uncertainty interval 3·89–4·12) annually, although it grew slower in per capita terms (2·72% [2·61–2·84]) and increased by less than $1 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5·55% [5·18–5·95]), mainly due to growth in government health spending, and in lower-middle-income countries (3·71% [3·10–4·34]), mainly from DAH. Health spending globally reached $8·0 trillion (7·8–8·1) in 2016 (comprising 8·6% [8·4–8·7] of the global economy and $10·3 trillion [10·1–10·6] in purchasing-power parity-adjusted dollars), with a per capita spending of US$5252 (5184–5319) in high-income countries, $491 (461–524) in upper-middle-income countries, $81 (74–89) in lower-middle-income countries, and $40 (38–43) in low-income countries. In 2016, 0·4% (0·3–0·4) of heal...
Mapping 123 million neonatal, infant and child deaths between 2000 and 2017 Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low-and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations. Gains in child survival have long served as an important proxy measure for improvements in overall population health and development 1,2. Global progress in reducing child deaths has been heralded as one of the greatest success stories of global health 3. The annual global number of deaths of children under 5 years of age (under 5) 4 has declined from 19.6 million in 1950 to 5.4 million in 2017. Nevertheless, these advances in child survival have been far from universally achieved, particularly in low-and middle-income countries (LMICs) 4. Previous subnational child mortality assessments at the first (that is, states or provinces) or second (that is, districts or counties) administrative level indicate that extensive geographical inequalities persist 5-7. Progress in child survival also diverges across age groups 4. Global reductions in mortality rates of children under 5-that is, the under-5 mortality rate (U5MR)-among post-neonatal age groups are greater than those for mortality of neonates (0-28 days) 4,8. It is relatively unclear how these age patterns are shifting at a more local scale, posing challenges to ensuring child survival. To pursue the ambitious Sustainable Development Goal (SDG) of the United Nations 9 to "end preventable deaths of newborns and children under 5" by 2030, it is vital for decision-makers at all levels to better understand where, and at what ages, child survival remains most tenuous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.