Prader–Willi syndrome (PWS) is a complex neurobehavioral condition which has been classically described as having two nutritional stages: poor feeding, frequently with failure to thrive (FTT) in infancy (Stage 1), followed by hyperphagia leading to obesity in later childhood (Stage 2). We have longitudinally followed the feeding behaviors of individuals with PWS and found a much more gradual and complex progression of the nutritional phases than the traditional two stages described in the literature. Therefore, this study characterizes the growth, metabolic, and laboratory changes associated with the various nutritional phases of PWS in a large cohort of subjects. We have identified a total of seven different nutritional phases, with five main phases and sub-phases in phases 1 and 2. Phase 0 occurs in utero, with decreased fetal movements and growth restriction compared to unaffected siblings. In phase 1 the infant is hypotonic and not obese, with sub-phase 1a characterized by difficulty feeding with or without FTT (ages birth—15 months; median age at completion: 9 months). This phase is followed by sub-phase 1b when the infant grows steadily along a growth curve and weight is increasing at a normal rate (median age of onset: 9 months; age quartiles 5–15 months). Phase 2 is associated with weight gain—in sub-phase 2a the weight increases without a significant change in appetite or caloric intake (median age of onset 2.08 years; age quartiles 20–31 months;), while in sub-phase 2b the weight gain is associated with a concomitant increased interest in food (median age of onset: 4.5 years; quartiles 3–5.25 years). Phase 3 is characterized by hyperphagia, typically accompanied by food-seeking and lack of satiety (median age of onset: 8 years; quartiles 5–13 years). Some adults progress to phase 4 which is when an individual who was previously in phase 3 no longer has an insatiable appetite and is able to feel full. Therefore, the progression of the nutritional phases in PWS is much more complex than previously recognized. Awareness of the various phases will aid researchers in unraveling the pathophysiology of each phase and provide a foundation for developing rational therapies. Counseling parents of newly diagnosed infants with PWS as to what to expect with regard to these nutritional phases may help prevent or slow the early-onset of obesity in this syndrome.
Prader–Willi syndrome (PWS) is a rare, complex multisystem genetic disorder which includes hypothalamic dysfunction, hyperphagia, cognitive and behavioral problems, increased anxiety, and compulsive behaviors. Individuals with PWS have a deficit of oxytocin producing neurons in the paraventricular nucleus of the hypothalamus. Oxytocin plays a role in regulation of feeding behaviors, social interactions, and emotional reactivity, which are all issues that significantly affect the quality of life for individuals with this syndrome. We performed a double-blind, placebo-controlled, crossover study in 24 children with PWS at three academic institutions using 5 days of intranasal oxytocin (IN-OT) or 5 days of intranasal placebo spray, followed by a 4 week washout period, and then patients returned for 5 days of treatment with the alternate source. Questionnaires, including the Aberrant Behavior Checklist, Social Responsiveness Scale, Repetitive Behavior Scale − Revised, and the Hyperphagia Questionnaire, as well as Clinical Global Impression scales were administered. Blood testing for sodium, potassium, and glucose levels on days 2, 4, and 6, and a 24 hr diet recall. All scales factor improvement from Day 3 to Day 6 favored oxytocin over placebo. No single factor showed a statistically significant difference (P < 0.05) between groups at Day 6. The drug effect appeared to be diminished at Day 14. There was no evidence of a difference between oxytocin and placebo in safety lab parameters, 60 min post dose vital signs, weight, or diet parameters. The results from this study suggest that low dose intranasal oxytocin is safe for individuals with PWS and may result in reduction in appetite drive, and improvements in socialization, anxiety, and repetitive behaviors. Further, long-term studies with a larger population of participants are necessary to confirm these findings. The results of this study are encouraging that oxytocin may be a safe and effective treatment for many of the issues that negatively impact individuals with PWS.
Angelman syndrome (AS) is a severe neurological disorder caused by a deficiency of ubiquitin protein ligase E3A (Ube3a), but the pathophysiology of the disease remains unknown. We now report that in the brains of AS mice in which the maternal Ube3a allele is mutated (m-) and the paternal allele is potentially inactivated by imprinting (p+) (Ube3a m-\p+) the mitochondria are abnormal and exhibit a partial oxidative phosphorylation (OXPHOS) defect. Electron microscopy of the hippocampal region of the Ube3a m-\p+ mice (n=6) reveals small, dense mitochondria with altered cristae, relative to wild-type littermates (n=6) and reduced synaptic vesicle density. The specific activity of OXPHOS complex III is reduced in whole brain mitochondria in Ube3a m-\p+ (n=5) mice versus wild-type littermates (n=5). Therefore, mitochondrial dysfunction may contribute to the pathophysiology of Angelman Syndrome.
Prader-Willi syndrome (PWS) is a multi-system disorder resulting from a lack of paternal gene expression in the 15q11.2-q13 region. Using databases compiled through response questionnaires completed by families known to the Prader-Willi Syndrome Association (USA), this study tested the hypothesis that PWS genetic subtype, BMI, age of diagnosis, clinical symptoms, and growth hormone treatment differ among deceased and living individuals with PWS. Categorical and continuous variables were compared using chi-square and two-group t-tests, respectively. Deceased individuals had higher rates of clinical features, including increased weight related concerns, heart problems, sleep apnea, other respiratory complications, diabetes, osteoporosis, high pain tolerance, and severe skin picking, when compared to living individuals. Meanwhile, living individuals had higher rates of growth hormone use and early puberty. Obesity and subsequent consequences are the primary contributors to increased mortality in PWS. Additional emphasis on areas to decrease mortality is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.