A rapid antibiotic susceptibility test (AST) is desperately needed in clinical settings for fast and appropriate antibiotic administration. Traditional ASTs, which rely on cell culture, are not suitable for urgent cases of bacterial infection and antibiotic resistance owing to their relatively long test times. We describe a novel AST called single-cell morphological analysis (SCMA) that can determine antimicrobial susceptibility by automatically analyzing and categorizing morphological changes in single bacterial cells under various antimicrobial conditions. The SCMA was tested with four Clinical and Laboratory Standards Institute standard bacterial strains and 189 clinical samples, including extended-spectrum β-lactamase-positive Escherichia coli and Klebsiella pneumoniae, imipenem-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococci from hospitals. The results were compared with the gold standard broth microdilution test. The SCMA results were obtained in less than 4 hours, with 91.5% categorical agreement and 6.51% minor, 2.56% major, and 1.49% very major discrepancies. Thus, SCMA provides rapid and accurate antimicrobial susceptibility data that satisfy the recommended performance of the U.S. Food and Drug Administration.
In Koreans, the secretion of GLP-1 or GIP during OGTTs and the incretin effect were comparable between subjects with NGT and type 2 diabetes, whereas the GIGD was significantly decreased in patients with type 2 diabetes.
The purpose of the study was to investigate the influence of the chin-tuck maneuver on the movements of swallowing-related structures in healthy subjects and formulate standard instructions for the maneuver. A total of 40 healthy volunteers (20 men and 20 women) swallowed 10 mL of diluted barium solution in a “normal and comfortable” position (NEUT), a comfortable chin-down position (DOWN), and a strict chin-tuck position (TUCK). Resting state anatomy and kinematic changes were analyzed and compared between postures. Although angles of anterior cervical flexion were comparable between DOWN (46.65 ± 9.69 degrees) and TUCK (43.27 ± 12.20), the chin-to-spine distance was significantly shorter in TUCK than in other positions. Only TUCK showed a significantly shorter anteroposterior diameter of the laryngeal inlet (TUCK vs. NEUT, 14.0 ± 4.3 vs. 16.3 ± 5.0 mm) and the oropharynx (18.8 ± 3.1 vs. 20.5 ± 2.8 mm) at rest. The maximal horizontal displacement of the hyoid bone was significantly less in TUCK (9.6 ± 3.0 mm) than in NEUT (12.6 ± 2.6 mm; p < 0.01) or DOWN (12.1 ± 3.0 mm; p < 0.01). TUCK facilitated movement of the epiglottic base upward (TUCK vs. NEUT, 15.8 ± 4.7 vs. 13.3 ± 4.5 mm; p < 0.01). In contrast, DOWN increased the horizontal excursion of the epiglottic base and reduced movement of the vocal cords. These results quantitatively elucidated the biomechanical influences of the chin-tuck maneuver including reduced horizontal movement of the hyoid bone, facilitation of vertical movement of the epiglottic base, and narrowing of the airway entrance. Comparing DOWN and TUCK, only TUCK induced significant changes in the airway entrance, hyoid movement, and epiglottic base retraction.
We quantified the influence of the elements of the extracorporeal oxygenation (ECMO) circuit on drug sequestration by focusing on the interactions between materials and drugs. Tubing of three different brands (Tygon/Maquet/Terumo) and oxygenators of two different brands (Maquet/Terumo) were used. Drugs included dexmedetomidine, meropenem, and heparin, which were dissolved in deionized water. Tubing was cut into approximately 7 cm sections and allowed drug solutions enclosed inside by clamping both ends. The oxygenator housing, gas membrane, and heat exchanger were dissected into approximately 1 g pieces and submerged into drug solutions. The experimental samples were then immersed in a water bath at 37°C for 1, 6, 12, and 24 h. After 24 h, the dexmedetomidine concentration was significantly reduced in all three types of tubing (<30.1%), the oxygenator heat exchanger from Maquet Inc. (41.8%), and the gas exchanger from Terumo Inc. (8.6%), while no significant losses were found for meropenem and heparin compared with the control group. The heparin concentration within the Maquet gas exchanger, on the contrary, increased significantly compared with the control group at 1 and 12 h (p < 0.05). Our in vitro study reveals that material selection is a vital part of ECMO development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.