We synthesized uniform pore-sized mesoporous silica spheres embedded with magnetite nanocrystal and quantum dots. The magnetic separation, luminescent detection, and controlled release of drugs were demonstrated using the uniform mesoporous silica spheres embedded with monodisperse nanocrystals.
We report on the synthesis of semiconductor nanocrystals of PbS, ZnS, CdS, and MnS through a facile and inexpensive synthetic process. Metal-oleylamine complexes, which were obtained from the reaction of metal chloride and oleylamine, were mixed with sulfur. The reaction mixture was heated under appropriate experimental conditions to produce metal sulfide nanocrystals. Uniform cube-shaped PbS nanocrystals with particle sizes of 6, 8, 9, and 13 nm were synthesized. The particle size was controlled by changing the relative amount of PbCl(2) and sulfur. Uniform 11 nm sized spherical ZnS nanocrystals were synthesized from the reaction of zinc chloride and sulfur, followed by one cycle of size-selective precipitation. CdS nanocrystals that consist of rods, bipods, and tripods were synthesized from a reaction mixture containing a 1:6 molar ratio of cadmium to sulfur. Spherical CdS nanocrystals (5.1 nm sized) were obtained from a reaction mixture with a cadmium to sulfur molar ratio of 2:1. MnS nanocrystals with various sizes and shapes were synthesized from the reaction of MnCl(2) and sulfur in oleylamine. Rod-shaped MnS nanocrystals with an average size of 20 nm (thickness) x 37 nm (length) were synthesized from a 1:1 molar ratio of MnCl(2) and sulfur at 240 degrees C. Novel bullet-shaped MnS nanocrystals with an average size of 17 nm (thickness) x 44 nm (length) were synthesized from the reaction of 4 mmol of MnCl(2) and 2 mmol of sulfur at 280 degrees C for 2 h. Shorter bullet-shaped MnS nanocrystals were synthesized from a 3:1 molar ratio of MnCl(2) and sulfur. Hexagon-shaped MnS nanocrystals were also obtained. All of the synthesized nanocrystals were highly crystalline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.