Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.
Ovarian cancer is the most lethal gynecologic disease because usually, it is lately sensed, easily acquires chemoresistance, and has a high recurrence rate. Recent studies suggest that ovarian cancer stem cells (CSCs) are involved in these malignancies. Here, we demonstrated that galectin-3 maintains ovarian CSCs by activating the Notch1 intracellular domain (NICD1). The number and size of ovarian CSCs decreased in the absence of galectin-3, and overexpression of galectin-3 increased them. Overexpression of galectin-3 increased the resistance for cisplatin and paclitaxel-induced cell death. Silencing of galectin-3 decreased the migration and invasion of ovarian cancer cells, and overexpression of galectin-3 reversed these effects. The Notch signaling pathway was strongly activated by galectin-3 overexpression in A2780 cells. Silencing of galectin-3 reduced the levels of cleaved NICD1 and expression of the Notch target genes, Hes1 and Hey1. Overexpression of galectin-3 induced NICD1 cleavage and increased expression of Hes1 and Hey1. Moreover, overexpression of galectin-3 increased the nuclear translocation of NICD1. Interestingly, the carbohydrate recognition domain of galectin-3 interacted with NICD1. Overexpression of galectin-3 increased tumor burden in A2780 ovarian cancer xenografted mice. Increased expression of galectin-3 was detected in advanced stages, compared to stage 1 or 2 in ovarian cancer patients, suggesting that galectin-3 supports stemness of these cells. Based on these results, we suggest that targeting galectin-3 may be a potent approach for improving ovarian cancer therapy.
Data availabilitySummary statistics generated by COVID-19 Host Genetics Initiative are available online (https://www.covid19hg.org/results/r6/). The analyses described here use the freeze 6 data. The COVID-19 Host Genetics Initiative continues to regularly release new data freezes. Summary statistics for samples from individuals of non-European ancestry are not currently available owing to the small individual sample sizes of these groups, but the results for 23 loci lead variants are reported in Supplementary Table 3. Individual-level data can be requested directly from the authors of the contributing studies, listed in Supplementary Table 1.
The recent generation of induced neurons by direct lineage conversion holds promise for in vitro modelling of sporadic Alzheimer's disease. Here, we report the generation of induced neuron-based model of sporadic Alzheimer's disease in mice and humans, and used this system to explore the pathogenic mechanisms resulting from the sporadic Alzheimer's disease risk factor apolipoprotein E (APOE) ɛ3/4 allele. We show that mouse and human induced neurons overexpressing mutant amyloid precursor protein in the background of APOE ɛ3/4 allele exhibit altered amyloid precursor protein (APP) processing, abnormally increased production of amyloid-β42 and hyperphosphorylation of tau. Importantly, we demonstrate that APOE ɛ3/4 patient induced neuron culture models can faithfully recapitulate molecular signatures seen in APOE ɛ3/4-associated sporadic Alzheimer's disease patients. Moreover, analysis of the gene network derived from APOE ɛ3/4 patient induced neurons reveals a strong interaction between APOE ɛ3/4 and another Alzheimer's disease risk factor, desmoglein 2 (DSG2). Knockdown of DSG2 in APOE ɛ3/4 induced neurons effectively rescued defective APP processing, demonstrating the functional importance of this interaction. These data provide a direct connection between APOE ɛ3/4 and another Alzheimer's disease susceptibility gene and demonstrate in proof of principle the utility of induced neuron-based modelling of Alzheimer's disease for therapeutic discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.