Horseshoe crabs, the most well-known example of "living fossils", are iconic and ecologically important macroinvertebrates in coastal and estuarine ecosystems. Their blood is a crucial resource for manufacturing Limulus or Tachypleus amebocyte lysate to detect bacterial endotoxins or fungal contamination in drug and medical devices. An enhanced understanding of their ecological roles and trophic interactions in the food webs is fundamental to facilitate resource management for the declining populations in Asia. Foraging information of the Asian species, however, is mainly derived from preliminary, scattered reports from a limited number of study locations. In this study, resource utilization, trophic niche dynamics, and trophic interaction of the juvenile tri-spine horseshoe crab, Tachypleus tridentatus (instars 1-12, approximately 0.5-8 years old) across ontogeny was assessed in diversified nursery habitats along the northern Beibu Gulf, China, using carbon and nitrogen stable isotopes. Our results suggest that: (i) T. tridentatus are ecological generalists given the vast range of carbon isotopic values and trophic niche width estimates exhibited between multiple instar groups; (ii) juvenile T. tridentatus across most habitat types predominantly assimilated energy from a variety of basal production sources in the food web, but primarily depended on sedimentary organic matter and seagrass resource pools; (iii) ontogenetic shifts in juvenile dietary proportions were evident, with decreased reliance on sedimentary organic matter, coupled with increased reliance on benthic macroinvertebrate grazers, detritivores, and omnivores with age; and (iv) nearly all juvenile instars occupied similar trophic positions in the food web with slight shifts in trophic position present with increasing size. Our findings indicate that resource availability and ontogenetic diet shifts strongly influence horseshoe crab trophic dynamics,
As a well-known example of “living fossil,” horseshoe crabs are ecologically significant macroinvertebrates in coastal and estuarine ecosystems. The tri-spine horseshoe crab, Tachypleus tridentatus, has been widely utilized for Tachypleus amebocyte lysate production and food consumption since the 1980s, which led to considerable population declines along the west coast of the Pacific Ocean. The declining horseshoe crab population is expected to have ecological and social impacts. Stock enhancement through captive rearing of juveniles is cited as an important alternative to repopulate the native T. tridentatus, which in turn supports sustainable resource utilization and research activities. The hatchery production techniques for this species have gradually developed following the mass culture efforts in Japan since the late 1980s. However, the previous studies have primarily concerned the feed types and husbandry conditions to maximize the growth and survival of the juveniles. Little is known about the practicability and effectiveness of releasing large numbers of hatchery-bred individuals through releasing programs. In this review, we (1) summarize the available captive breeding and rearing techniques, (2) discuss the release strategies that could potentially improve the survival of released juveniles, and (3) identify the future opportunities and challenges in establishing technical frameworks to support responsible stock enhancement programs for T. tridentatus. The information should benefit future horseshoe crab fisheries management efforts in the attempt to restore the severely depleted populations.
Effective culture and management of adult tri-spine horseshoe crab, Tachypleus tridentatus can ensure that stock enhancement programs and aquaculture systems are maintained. To explore suitable feed for animals during the breeding season, Pacific oyster (Ostrea gigas) (oyster group; OG) and frozen sharpbelly fish (Hemiculter leucisculus) (frozen fish group; FG) were selected to feed 20 T. tridentatus male and female pairs, respectively. At the end of the experiment, intestinal samples were obtained to measure digestive enzymes activities. The intestinal flora were determined by 16S rDNA sequencing. No eggs were observed in the FG and one T. tridentatus adult died. No animals died in the OG, and 9.7 × 10 4 eggs were obtained. These results show that oysters are more suitable for the development and reproduction of adult T. tridentatus than frozen fish. Additionally, the digestive enzyme activity analysis revealed that animals in the OG exhibited higher protein digestibility than those in the FG, but no significant differences in lipid and carbohydrate uptake were observed between the groups. Furthermore, the intestinal flora analysis showed that operational taxonomic units (OTUs) and the Chao1 index were significantly higher in the OG than in the FG, but no significant difference was observed in the Shannon or Simpson indices between the groups. Our data indicate that the oyster diet improved the intestinal microbial diversity of T. tridentatus. We hypothesize that nutrients, such as oyster-based taurine, proteins, and highly unsaturated fatty acids, improve protease activity in the T. tridentatus digestive tract, alter the intestinal floral structure, and improve the reproductive performance of T. tridentatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.