Cryptosporidium spp., Giardia duodenalis, and Blastocystis sp. are common intestinal protozoans that infect humans and animals worldwide. A survey that assessed the prevalence, molecular characteristics, and zoonotic potential of these pathogens was conducted on a variety of dogs in Guangzhou, southern China. A total of 651 canine stool samples from household (n = 199), shelter (n = 149), breeding (n = 237), and pet market dogs (n = 66) were collected from eight districts in Guangzhou. Cryptosporidium spp., Giardia duodenalis, and Blastocystis sp. were detected by PCR amplification of the SSU rRNA gene. Giardia duodenalis-positive specimens were further assigned into assemblages using the glutamate dehydrogenase gene. Cryptosporidium spp., G. duodenalis, and Blastocystis sp. were found in 21 (3.2%), 20 (3.1%), and 35 (5.4%) samples, respectively. The overall prevalence of shelter dogs (40.28%, 60/149) was significantly higher than that of household (3.0%, 6/199), breeding (2.1%, 5/237), and pet market dogs (7.5%, 5/66) (χ2 = 154.72, df = 3, P < 0.001). Deworming in the past 12 months had a strong protective effect on the risk of contracting parasite infections (P < 0.001). No significant differences were detected between age or sex groups (P > 0.05). Dog-specific C. canis (n = 19) and zoonotic C. parvum (n = 2) were the only two Cryptosporidium species. Sequence analysis revealed the presence of three G. duodenalis assemblages: dog-specific assemblages D (n = 14) and C (n = 5), and cat-specific F (n = 1). Zoonotic Blastocystis ST3 (n = 28) was the dominant subtype, followed by ST1 (n = 6) and ST10 (n = 1). To our knowledge, this is the first large-scale investigation on the occurrence and molecular characteristics of Blastocystis sp. in dogs in China. Our results indicated that the dogs seemed to play a negligible role as reservoirs for Cryptosporidium spp. and G. duodenalis transmission to humans, but they are potential novel suitable hosts of Blastocystis sp. A strict sentinel surveillance system of dogs should be established to minimise the zoonotic risk of spreading blastocystosis among humans and dogs.
Background Poultry necrotic enteritis (NE) is an economically important disease caused by C. perfringens. The disease causing ability of this bacterium is linked with the production of a wide variety of toxins. Among them, necrotic enteritis B-like (NetB) toxin is reported to be involved in the pathogenesis of NE; in addition there is some circumstantial evidence that tpeL toxin may enhance virulence, but this is yet to be definitely shown. The situation becomes more complicated in the presence of a number of predisposing factors like co-infection with coccidia, type of diet and use of high protein diet. These co-factors alter the intestinal environment, thereby favoring the production of more toxins, leading to a more severe disease. The objective of this study was to develop a successful animal model that would induce clinical signs and lesions of NE using C. perfringens type G strains obtained from field outbreaks. A separate trial was simultaneously considered to establish the role of dietary factor with coccidial co-infection in NE. Results The results have shown that use of net-B positive C. perfringens without predisposing factors induce moderate to severe NE (Av. Lesion score 1.79 ± 1.50). In a separate trial, addition of fish meal to a feed of C. perfringens challenged birds produced higher number of NE cases (Av. Lesion score 2.17 ± 1.28). However, use of less virulent E. necatrix strain along with fish meal in conjunction with net-B positive strain did not alter the severity of NE lesions in specific pathogen free chicken (Av. Lesion score 2.21 ± 1.13). Conclusions This study suggests that virulent C. perfringens type G strains can induce NE lesions in the absence of other predisposing factors. Birds in the clostridia challenged group showed moderate to severe NE lesions. Use of less virulent coccidia strain contributed to a lesser extent in increasing the severity of disease. Maize based diet along with fishmeal (1:1) increased the severity of lesions but statistically it was non-significant. The NE lesions in all experimental groups were found to be present more frequently in the duodenum. In this way, this study provided an effective model for in vivo production of NE in poultry birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.