Campylobacter jejuni invasion is closely related to C. jejuni pathogenicity. The intestinal epithelium contains polarized epithelial cells that form tight junctions (TJs) to provide a physical barrier against bacterial invasion. Previous studies indicated that C. jejuni invasion of non-polarized cells involves several cellular features, including lipid rafts. However, the dynamics of C. jejuni invasion of polarized epithelial cells are not fully understood. Here we investigated the interaction between C. jejuni invasion and TJ formation to characterize the mechanism of C. jejuni invasion in polarized epithelial cells. In contrast to non-polarized epithelial cells, C. jejuni invasion was not affected by depletion of lipid rafts in polarized epithelial cells. However, depletion of lipid rafts significantly decreased C. jejuni invasion in TJ disrupted cells or basolateral infection and repair of cellular TJs suppressed lipid raft-mediated C. jejuni invasion in polarized epithelial cells. In addition, pro-inflammatory cytokine, TNF-α treatment that induce TJ disruption promote C. jejuni invasion and lipid rafts depletion significantly reduced C. jejuni invasion in TNF-α treated cells. These data demonstrated that TJs prevent C. jejuni invasion from the lateral side of epithelial cells, where they play a main part in bacterial invasion and suggest that C. jejuni invasion could be increased in inflammatory condition. Therefore, maintenance of TJs integrity should be considered important in the development of novel therapies for C. jejuni infection.
Campylobacter jejuni is a major cause of bacterial foodborne illness in humans worldwide. Bacterial entry into a host eukaryotic cell involves the initial steps of adherence and invasion, which generally activate several cell-signaling pathways that induce the activation of innate defense systems, which leads to the release of proinflammatory cytokines and induction of apoptosis. Recent studies have reported that the unfolded protein response (UPR), a system to clear unfolded proteins from the endoplasmic reticulum (ER), also participates in the activation of cellular defense mechanisms in response to bacterial infection. However, no study has yet investigated the role of UPR in C. jejuni infection. Hence, the aim of this study was to deduce the role of UPR signaling via induction of ER stress in the process of C. jejuni infection. The results suggest that C. jejuni infection suppresses global protein translation. Also, 12 h of C. jejuni infection induced activation of the eIF2α pathway and expression of the transcription factor CHOP. Interestingly, bacterial invasion was facilitated by knockdown of UPR-associated signaling factors and treatment with the ER stress inducers, thapsigargin and tunicamycin, decreased the invasive ability of C. jejuni. An investigation into the mechanism of UPR-mediated inhibition of C. jejuni invasion showed that UPR signaling did not affect bacterial adhesion to or survival in the host cells. Further, Salmonella Enteritidis or FITC-dextran intake were not regulated by UPR signaling. These results indicated that the effect of UPR on intracellular intake was specifically found in C. jejuni infection. These findings are the first to describe the role of UPR in C. jejuni infection and revealed the participation of a new signaling pathway in C. jejuni invasion. UPR signaling is involved in defense against the early step of C. jejuni invasion and thus presents a potential therapeutic target for the treatment of C. jejuni infection.
Campylobacter jejuni is a leading cause of food-borne disease worldwide. The pathogenicity of C. jejuni is closely associated with the internalization process in host epithelial cells, which is related to a host immune response. Autophagy indicates a key role in the innate immune system of the host to exclude invasive pathogens. Most bacteria are captured by autophagosomes and degraded by autophagosome-lysosome fusion in host cells. However, several pathogens, such as Salmonella and Shigella, avoid and/or escape autophagic degradation to establish infection. But autophagy involvement as a host immune response to C. jejuni infection has not been clarified. This study revealed autophagy association in C. jejuni infection. During infection, C. jejuni activated the Rho family small GTPase Rac1 signaling pathway, which modulates actin remodeling and promotes the internalization of this pathogen. In this study, we found the LC3 contribution to C. jejuni invasion signaling via the Rac1 signaling pathway. Interestingly, during C. jejuni invasion, LC3 was recruited to bacterial entry site depending on Rac1 GTPase activation just at the early step of the infection. C. jejuni infection induced LC3-II conversion, and autophagy induction facilitated C. jejuni internalization. Also, autophagy inhibition attenuated C. jejuni invasion step. Moreover, Rac1 recruited LC3 to the cellular membrane, activating the invasion of C. jejuni. Altogether, our findings provide insights into the new function of LC3 in bacterial invasion. We found the interaction between the Rho family small GTPase, Rac1, and autophagy-associated protein, LC3.
Vibrio parahaemolyticus is a Gram-negative halophilic pathogen that frequently causes acute gastroenteritis and occasional wound infection. V. parahaemolyticus contains several virulence factors, including type III secretion systems (T3SSs) and thermostable direct hemolysin (TDH). In particular, T3SS1 is a potent cytotoxic inducer, and T3SS2 is essential for causing acute gastroenteritis. Although much is known about manipulation of host signaling transductions by the V. parahaemolyticus effector, little is known about the host metabolomic changes modulated by V. parahaemolyticus. To address this knowledge gap, we performed a metabolomic analysis of the epithelial cells during V. parahaemolyticus infection using capillary electrophoresis-time of flight mass spectrometry (CE-TOF/MS). Our results revealed significant metabolomic perturbations upon V. parahaemolyticus infection. Moreover, we identified that T3SS1’s VopQ effector was responsible for inducing the significant metabolic changes in the infected cells. The VopQ effector dramatically altered the host cell’s glycolytic, tricarboxylic acid cycle (TCA), and amino acid metabolisms. VopQ effector disrupted host cell redox homeostasis by depleting cellular glutathione and subsequently increasing the level of reactive oxygen species (ROS) production. IMPORTANCE The metabolic response of host cells upon infection is pathogen specific, and infection-induced host metabolic reprogramming may have beneficial effects on the proliferation of pathogens. V. parahaemolyticus contains a range of virulence factors to manipulate host signaling pathways and metabolic processes. In this study, we identified that the T3SS1 VopQ effector rewrites host metabolism in conjunction with the inflammation and cell death processes. Understanding how VopQ reprograms host cell metabolism during the infection could help us to identify novel therapeutic strategies to enhance the survival of host cells during V. parahaemolyticus infection.
The prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is increasing rapidly and spreading worldwide, particularly in Asia, compared to other regions. In the last ten years, in our hospital, in particular, there has been a < 30% increase. To prevent the spread of ESBL in hospitals and the community, the ultraviolet (UV) A-light-emitting diode (LED) irradiation device was used to inactivate ESBL-E. coli in human livestock and the environment. ESBL-E. coli and E. coli bacterial samples were collected from patients at Tokushima University Hospital (Tokushima City, Japan). The UVA-LED irradiation system had 365 nm single wavelength, and the current of the circuit was set to 0.23 or 0.50 A consistently. Results demonstrated that UVA-LED was useful for the inactivation of ESBL-E. coli and E. coli. The minimum energy dosage required to inactivate ESBL-E. coli and E. coli was 40.76 J/cm 2 (45 min) in the first type of UVA-LED and 38.85 J/cm 2 (5 min) in the second type. There were no significant differences between ESBL-E. coli and E. coli. The inactivation of ESBL-E. coli was dependent on energy. These findings suggest that UVA-LED with 365 nm single wavelength could be useful for surface decontamination in healthcare facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.