Purpose Glioma is the most prevalent malignant form of brain tumors, with a dismal prognosis. Currently, cancer immunotherapy has emerged as a revolutionary treatment for patients with advanced highly aggressive therapy-resistant tumors. However, there is no effective biomarker to reflect the response to immunotherapy in glioma patient so far. So we aim to assess the clinical predictive value of FCER1G in patients with glioma. Methods The expression level and correlation between clinical prognosis and FER1G levels were analyzed with the data from CGGA, TCGA, and GEO database. Univariate and multivariate cox regression model was built to predict the prognosis of glioma patients with multiple factors. Then the correlation between FCER1G with immune cell infiltration and activation was analyzed. At last, we predict the immunotherapeutic response in both high and low FCER1G expression subgroups. Results FCER1G was significantly higher in glioma with greater malignancy and predicted poor prognosis. In multivariate analysis, the hazard ratio of FCER1G expression (Low versus High) was 0.66 and 95 % CI is 0.54 to 0.79 (P < 0.001), whereas age (HR = 1.26, 95 % CI 1.04–1.52), grade (HR = 2.75, 95 % CI 2.06–3.68), tumor recurrence (HR = 2.17, 95 % CI 1.81–2.62), IDH mutant (HR = 2.46, 95 % CI 1.97–3.01) and chemotherapeutic status (HR = 1.4, 95 % CI 1.20–1.80) are also included. Furthermore, we illustrated that gene FCER1G stratified glioma cases into high and low FCER1G expression subgroups that demonstrated with distinct clinical outcomes and T cell activation. At last, we demonstrated that high FCER1G levels presented great immunotherapeutic response in glioma patients. Conclusions This study demonstrated FCER1G as a novel predictor for clinical diagnosis, prognosis, and response to immunotherapy in glioma patient. Assess expression of FCER1G is a promising method to discover patients that may benefit from immunotherapy.
Disregulation of fatty acid oxidation, one of the major mechanisms for maintaining hepatic lipid homeostasis under fasting conditions, leads to hepatic steatosis. Although obesity and type 2 diabetes-induced endoplasmic reticulum (ER) stress contribute to hepatic steatosis, it is largely unknown how ER stress regulates fatty acid oxidation. Here we show that fasting glucagon stimulates the dephosphorylation and nuclear translocation of histone deacetylase 5 (HDAC5), where it interacts with PPARα and promotes transcriptional activity of PPARα. As a result, overexpression of HDAC5 but not PPARα binding-deficient HDAC5 in liver improves lipid homeostasis, whereas RNAi-mediated knockdown of HDAC5 deteriorates hepatic steatosis. ER stress inhibits fatty acid oxidation gene expression via calcium/calmodulin-dependent protein kinase II-mediated phosphorylation of HDAC5. Most important, hepatic overexpression of a phosphorylation-deficient mutant HDAC5 2SA promotes hepatic fatty acid oxidation gene expression and protects against hepatic steatosis in mice fed a high-fat diet. We have identified HDAC5 as a novel mediator of hepatic fatty acid oxidation by fasting and ER stress signals, and strategies to promote HDAC5 dephosphorylation could serve as new tools for the treatment of obesity-associated hepatic steatosis.
Background and purposeC-C motif chemokine ligand 17 (CCL17) presents an important role in immune regulation, which is critical in the pathophysiology of brain injury after subarachnoid haemorrhage (SAH). There is rare evidence to illustrate the function of CCL17 towards SAH. In this study, we try to reveal the therapeutic effects of CCL17 and its underlying mechanism in rat SAH model.MethodsSAH rat models were assigned to receive recombinant CCL17 (rCCL17) or phosphate buffer saline (PBS). AZD2098 and JR-AB2-011 were applied to investigate the C-C motif chemokine receptor 4 (CCR4)/mammalian target of rapamycin complex 2 (mTORC2) axis in CCL17-mediated neuroprotection. To elucidate the underlying mechanism, the in vitro kinase assay was performed in primary microglia. Microglial-specific Rictor knockdown was administered via intracerebroventricular injection of adenovirus-associated virus. Brain water content, short-term neurobehavioural evaluation, western blot analysis, quantitative RT-PCR and histological staining were performed.ResultsThe expression of CCL17 was increased and secreted from neurons after oxyhaemoglobin stimulation. Exogenous rCCL17 significantly alleviated neuronal apoptosis, and alleviated short-term neurofunction after SAH in rats. In addition, rCCL17 increased M2-like polarisation of microglia in rats post-SAH and in primary microglia culture. The neuroprotection of rCCL17 was abolished via inhibition of either CCR4 or mTORC2.ConclusionCCL17 activated the CCR4/mTORC2 axis in microglia, which can alleviate SAH-induced neurological deficits by promoting M2-like polarisation of microglia.
Exercise benefits M2 macrophage polarization, energy homeostasis and protects against obesity partially through exercise-induced circulating factors. Here, by unbiased quantitative proteomics on serum samples from sedentary and exercised mice, we identify parvalbumin as a circulating factor suppressed by exercise. Parvalbumin functions as a non-competitive CSF1R antagonist to inhibit M2 macrophage activation and energy expenditure in adipose tissue. More importantly, serum concentrations of parvalbumin positively correlate with obesity in mouse and human, while treating mice with a recombinant parvalbumin blocker prevents its interaction with CSF1R and promotes M2 macrophage polarization and ameliorates diet-induced obesity. Thus, although further studies are required to assess the significance of parvalbumin in mediating the effects of exercise, our results implicate parvalbumin as a potential therapeutic strategy against obesity in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.