We present a rapid synthetic method for the development of hyperbranched PEIs decorated with different oligosaccharide architectures as carrier systems (CS) for drugs and bioactive molecules for in vitro and in vivo experiments. Reductive amination of hyperbranched PEI with readily available oligosaccharides results in sugar functionalized PEI cores with oligosaccharide shells of different densities. These core-shell architectures were characterized by NMR spectroscopy, elemental analysis, SLS, DLS, IR, and polyelectrolyte titration experiments. ATP complexation of theses polycations was examined by isothermal titration calorimetry to evaluate the binding energy and ATP/CS complexation ratios under physiological conditions. In vitro experiments showed an enhanced cellular uptake of ATP/CS complexes compared to those of the free ATP molecules. The results arise to initiate further noncovalent complexation studies of pharmacologically relevant molecules that may lead to the development of therapeutics based on this polymeric delivery platform.
An artificial anion receptor is presented, in which two cyclohexapeptide subunits containing l-proline and 6-aminopicolinic acid subunits in an alternating sequence are connected via an adipinic acid spacer. This compound was devised to stabilize the 2:1 sandwich-type anion complexes that are observed when the two cyclopeptide moieties are not covalently connected and to obtain a 1:1 stoichiometry for these aggregates. Electrospray ionization mass spectrometry and NMR spectroscopic investigations showed that the bridged bis(cyclopeptide) does indeed form defined 1:1 complexes with halides, sulfate, and nitrate. ROESY NMR spectroscopy and molecular modeling allowed a structural assignment of the sulfate complex in solution. The stabilities of various anion complexes were determined by means of NMR titrations and isothermal titration microcalorimetry in 50% water/methanol. Both methods gave essentially the same quantitative results, namely stability constants that varied in the range 105-102 M-1 and decreased in the order SO42- > I- > Br- > Cl- > NO3-. This order was rationalized in terms of the size of the anions with the larger anions forming the more stable complexes because they better fit into the cavity of the host. The ability of sulfate to form stronger hydrogen bonds to the NH groups of the receptor, in addition to its slightly larger ionic radius with respect to iodide, causes the higher stability of the sulfate complex. No significant effect of the countercation on complex stability was observed. Furthermore, complex stability is enthalpically as well as entropically favored. A comparison of the iodide and sulfate complex stabilities of the ditopic receptor with those of a cyclopeptide that forms 1:1 anion complexes in solution showed that the presence of a second binding site increases complex stability by a factor of 100-350.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.