Many ruminant species show seasonal patterns of reproduction. Causes for this are widely debated, and include adaptations to seasonal availability of resources (with cues either from body condition in more tropical, or from photoperiodism in higher latitude habitats) and/or defence strategies against predators. Conclusions so far are limited to datasets with less than 30 species. Here, we use a dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos to describe their reproductive patterns quantitatively [determining the birth peak breadth (BPB) as the number of days in which 80% of all births occur]; then we link this pattern to various biological characteristics [latitude of origin, mother-young-relationship (hider/follower), proportion of grass in the natural diet (grazer/browser), sexual size dimorphism/mating system], and compare it with reports for free-ranging animals. When comparing taxonomic subgroups, variance in BPB is highly correlated to the minimum, but not the maximum BPB, suggesting that a high BPB (i.e. an aseasonal reproductive pattern) is the plesiomorphic character in ruminants. Globally, latitude of natural origin is highly correlated to the BPB observed in captivity, supporting an overruling impact of photoperiodism on ruminant reproduction. Feeding type has no additional influence; the hider/follower dichotomy, associated with the anti-predator strategy of 'swamping', has additional influence in the subset of African species only. Sexual size dimorphism and mating system are marginally associated with the BPB, potentially indicating a facilitation of polygamy under seasonal conditions. The difference in the calculated Julian date of conception between captive populations and that reported for free-ranging ones corresponds to the one expected if absolute day length was the main trigger in highly seasonal species: calculated day length at the time of conception between free-ranging and captive populations followed a y = x relationship. Only 11 species (all originating from lower latitudes) were considered to change their reproductive pattern distinctively between the wild and captivity, with 10 becoming less seasonal (but not aseasonal) in human care, indicating that seasonality observed in the wild was partly resource-associated. Only one species (Antidorcas marsupialis) became more seasonal in captivity, presumably because resource availability in the wild overrules the innate photoperiodic response. Reproductive seasonality explains additional variance in the body mass-gestation period relationship, with more seasonal species having shorter gestation periods for their body size. We conclude that photoperiodism, and in particular absolute day length, are genetically fixed triggers for reproduction that may be malleable to some extent by body condition, and that plasticity in gestation length is an important facilitator that may partly explain the success of ruminant radiation to high latitudes. Evidence for an anti-predator strategy involving seasonal reproduction is li...
The roe deer (Capreolus capreolus) is a seasonal breeder. The cyclic changes between totally arrested and highly activated spermatogenesis offer an ideal model to study basic mechanisms of spermatogenesis. In this study, we demonstrated, to our knowledge for the first time, c-kit receptor-positive cells in the testis of roe deer. They were immunohistologically identified mainly as spermatogonia. Analysis of the amount of those cells by flow cytometry shows a distinct seasonal pattern, with pronounced differences between cells in the diploid state and in the G2/M phase of mitosis. The specific seasonal pattern of spermatogonial proliferation results in the increased relative abundance of spermatogonia as well as in their increased total number per testis in November and December. This suggests that cell divisions continue on a level sufficient to accumulate spermatogonia during winter. The serum concentrations of LH and FSH showed a peak in spring; testosterone showed a maximum concentration during the rut (July/August). The peak of both gonadotropins seems to precede the period of stimulated spermatogonial proliferation in spring. The testosterone peak coincides with maximal meiotic intensity in August. The results suggest the importance of testosterone for sperm production, and they provide a basis for detailed investigations of regulatory factors of the proliferation of spermatogonia.
Four hundred forty-eight blood plasma samples from free-living birds of prey from Berlin and the Brandenburg area in eastern Germany were tested for antibodies against Newcastle disease virus (NDV), falcon herpesvirus (FHV), owl herpesvirus (OHV), and Chlamydia psittaci. Antibodies to NDV were detected in 6 (2%) of 346 tested diurnal birds of prey, whereas none of the owls (n = 55) was positive. The positive samples originated from two common buzzards (Buteo buteo), three ospreys (Pandion haliactus) and one marsh harrier (Circus aeruginosus). Titers varied between 1:8 and 1:32. Of 253 birds of prey one osprey (<1%) tested positive for antibodies to FHV with low titer of 1:6. This is the first detection of antibodies against FHV in an osprey. Furthermore, antibodies against OHV could be found in one tawny owl (Strix aluco) and one common buzzard (2 of 253, 1%) with low titers of 1:6. Of 422 birds of prey 267 (63%) tested positive for antibodies to Chlamydia psittaci with titers varying between 1:5 and 1:256 which reflects the ubiquitous occurrence of Chlamydia psittaci in these birds of prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.