The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO 2 -rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
Before Perseverance, Jezero crater’s floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigate the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We find that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some Martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multi-stage cooling of a thick magma body.
The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/ MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz UDRY ET AL.
The first samples collected by the Perseverance rover on the Mars 2020 mission were from the Maaz formation, a lava plain that covers most of the floor of Jezero crater. Laboratory analysis of these samples back on Earth will provide important constraints on the petrologic history, aqueous processes, and timing of key events in Jezero. However, interpreting these samples will require a detailed understanding of the emplacement and modification history of the Maaz formation. Here we synthesize rover and orbital remote sensing data to link outcrop-scale interpretations to the broader history of the crater, including Mastcam-Z mosaics and multispectral images, SuperCam chemistry and reflectance point spectra, RIMFAX ground penetrating radar, and orbital hyperspectral reflectance and high-resolution images. We show that the Maaz formation is composed of a series of distinct members corresponding to basaltic to basaltic andesite lava flows. The members exhibit variable spectral signatures dominated by high-Ca pyroxene, Fe-bearing feldspar, and hematite, which can be tied directly to igneous grains and altered matrix in abrasion patches. Spectral variations correlate with morphological variations, from recessive layers that produce a regolith lag in lower Maaz, to weathered polygonally fractured paleosurfaces and crater-retaining massive blocky hummocks in upper Maaz. The Maaz members were likely separated by one or more extended periods of time, and were subjected to variable erosion, burial, exhumation, weathering, and tectonic modification. The two unique samples from the Maaz formation are representative of this diversity, and together will provide an important geochronological framework for the history of Jezero crater. Hosted fileessoar.10512674.1.docx available at https://authorea.com/users/531790/articles/620328mineralogy-morphology-and-emplacement-history-of-the-maaz-formation-on-the-jezerocrater-floor-from-orbital-and-rover-observations Mineralogy, morphology, and emplacement history of the Maaz formation on the Jezero crater floor from orbital and rover observations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.