The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the cortico-thalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas. Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse cortico-thalamic visual system..
Cortical circuits can flexibly change with experience and learning, but the effects on specific cell types, including distinct inhibitory types, are not well understood. Here we investigated how excitatory and VIP inhibitory cells in layer 2/3 of mouse visual cortex were impacted by visual experience in the context of a behavioral task. Mice learned a visual change detection task with a set of eight natural scene images. Subsequently, during 2-photon imaging experiments, mice performed the task with these familiar images and three sets of novel images. Strikingly, the temporal dynamics of VIP activity differed markedly between novel and familiar images: VIP cells were stimulus-driven by novel images but were suppressed by familiar stimuli and showed ramping activity when expected stimuli were omitted from a temporally predictable sequence. This prominent change in VIP activity suggests that these cells may adopt different modes of processing under novel versus familiar conditions.
33 The mammalian visual system, from retina to neocortex, has been extensively studied at both 34 anatomical and functional levels. Anatomy indicates the cortico-thalamic system is hierarchical, 35 but characterization of cellular-level functional interactions across multiple levels of this 36 hierarchy is lacking, partially due to the challenge of simultaneously recording activity across 37 numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory) 38 that surveys spiking from units in six cortical and two thalamic regions responding to a battery of 39 visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional 40 connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas. 41Classical functional measures of hierarchy, including visual response latency, receptive field 42 size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated 43 with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral 44 relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide 45 a foundation for understanding coding and dynamics in the mouse cortico-thalamic visual 46 system. 47
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.