The natural extracellular matrix (ECM),thanks to its specific properties (e.g., collagenous lattice, a reservoir of growth factors, ECM-cell anchoring areas, an optimal pH and CO ),ensures an optimal microenvironment for homeostatic and regenerative cell development. In the context of regenerative medicine, ECM is a lair for residual and infiltrative cells. The aim of the clinical usage of cell-free ECM scaffolds is the enhancement of tissue regeneration with possible minimization of an adverse host reaction on allogeneic or xenogeneic biomaterial. Thus, the objective of decellularization is to obtain acellular grafts characterized by optimal biological properties, such as a lack of remaining cellular elements (e.g., cell membrane phospholipids and proteins, nucleic acids, mitochondria), lack of immunogenicity, lack of calcification promotion and lack of cytotoxicity (e.g., in unrinsed detergents). Furthermore, cell-free ECM scaffolds should present the optimal mechanical and structural properties that may ensure the biocompatibility of the graft. The maintenance of the ultrastructure composition of the ECM is one of the most important goals of decellularization. All physical, chemical, and biological methods proposed (used separately or in combination to extract cells from tissues/organs) are not 100% effective in cell removal and always cause a disruption of the ECM texture, as well as a probable loss of important structure components. Although cell-free ECM scaffolds are generally classified as medical devices, there are no widely accepted or legally defined criteria for quality control/evaluation methods of obtained matrices. Such criteria must be provided. Some of them have been proposed in this manuscript. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 909-923, 2018.
Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.