Glucocorticoids (GCs) are well known to induce insulin resistance. However, the effect of GCs on insulin secretion has not been well characterized under physiological conditions in human. We here evaluated the effect of GCs on insulin secretion/ß-cell function precisely in a physiological condition. A population-based study of 1,071 Japanese individuals enrolled in the 2014 Iwaki study (390 men, 681 women; aged 54.1 ± 15.1 years), those excluded individuals taking medication for diabetes or steroid treatment, were enrolled in the present study. Association between serum cortisol levels and insulin resistance/secretion assessed by homeostasis model assessment using fasting blood glucose and insulin levels (HOMA-R and HOMA-ß, respectively) were examined. Univariate linear regression analyses showed correlation of serum cortisol levels with HOMA-ß (ß = -0.134, p <0.001) but not with HOMA-R (ß = 0.042, p = 0.172). Adjustments for age, gender, and the multiple clinical characteristics correlated with HOMA indices showed similar results (HOMA-ß: ß = -0.062, p = 0.025; HOMA-R: ß = -0.023, p = 0.394). The correlation between serum cortisol levels and HOMA-ß remained significant after adjustment for HOMA- R (ß = -0.057, p = 0.034). When subjects were tertiled based on serum cortisol levels, the highest tertile was at greater risk of decreased insulin secretion (defined as lower one third of HOMA-ß (≤70)) than the lowest tertile, after adjustment for multiple factors including HOMA- R (odds ratio 1.26, 95% confidence interval 1.03–1.54). In conclusion, higher serum cortisol levels are significantly associated with decreased insulin secretion in the physiological cortisol range in a Japanese population.
In addition to insulin treatment, IR with or without compensatory hyperinsulinaemia is associated with nociceptive dysfunction of different phenotypes, independent of glycaemic levels.
Prolactin (PRL) has roles in various physiological functions. Although experimental studies showed that PRL has both beneficial and adverse effects on type 2 diabetes mellitus, clinical findings in subjects with hyperprolactinemia indicate adverse effects on glucose metabolism. However, effects of PRL within the physiological range in human are controversial. A population-based study of 370 Japanese men enrolled in the 2014 Iwaki study (aged 52.0 ± 14.8 years). In this cross-sectional study, associations between serum PRL levels and homeostatic model assessment (HOMA) indices representing glucose metabolism in a physiological setting were examined using multivariable regression analysis. Although univariate linear regression analyses showed significant associations between serum PRL levels and HOMA indices, adjustment with multiple factors made the association with HOMA-ß (insulin secretion) insignificant, while those with HOMA-R (insulin resistance) remained significant (ß = 0.084, p = 0.035). Non-linear regression analyses showed a regression curve with a peak at serum PRL level, 12.4 ng/mL and a positive association of serum PRL level with HOMA-R below the peak (ß = 0.119, p = 0.004). Higher serum PRL levels within the physiological range seem to be associated with insulin resistance in men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.