This study shows that reproductive factors and BMI are most clearly associated with hormone receptor-positive tumors and suggest that triple-negative or CBP tumors may have distinct etiology.
TERT-locus single nucleotide polymorphisms (SNPs) and leucocyte telomere measures are reportedly associated with risks of multiple cancers. Using the iCOGs chip, we analysed ~480 TERT-locus SNPs in breast (n=103,991), ovarian (n=39,774) and BRCA1 mutation carrier (11,705) cancer cases and controls. 53,724 participants have leucocyte telomere measures. Most associations cluster into three independent peaks. Peak 1 SNP rs2736108 minor allele associates with longer telomeres (P=5.8×10 −7 ), reduced estrogen receptor negative (ER-negative) (P=1.0×10 −8 ) and BRCA1 mutation carrier (P=1.1×10 −5 ) breast cancer risks, and altered promoter-assay signal. Peak 2 SNP rs7705526 minor allele associates with longer telomeres (P=2.3×10 −14 ), increased low malignant potential ovarian cancer risk (P=1.3×10 −15 ) and increased promoter activity. Peak 3 SNPs rs10069690 and rs2242652 minor alleles increase ER-negative (P=1.2×10 −12 ) and BRCA1 mutation carrier (P=1.6×10 −14 ) breast and invasive ovarian (P=1.3×10 −11 ) cancer risks, but not via altered telomere length. The cancer-risk alleles of rs2242652 and rs10069690 respectively increase silencing and generate a truncated TERT splicevariant.
Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.
Tumor recurrence and metastasis result in an unfavorable prognosis for cancer patients. Recent studies have suggested that specific microRNAs (miRNAs) may play important roles in the development of cancer cells. However, prognostic markers and the outcome prediction of the miRNA signature in breast cancer patients have not been comprehensively assessed. The aim of this study was to identify miRNA biomarkers relating to clinicopathological features and outcome of breast cancer. A miRNA microarray analysis was performed on breast tumors of different lymph node metastasis status and with different progression signatures, indicated by overexpression of cyclin D1 and β-catenin genes, to identify miRNAs showing a significant difference in expression. The functional interaction between the candidate miRNA, miR-30a, and the target gene, Vim, which codes for vimentin, a protein involved in epithelial-mesenchymal transition, was examined using the luciferase reporter assay, western blotting, and migration and invasion assays. The association between the decreased miR-30a levels and breast cancer progression was examined in a survival analysis. miR-30a negatively regulated vimentin expression by binding to the 3'-untranslated region of Vim. Overexpression of miR-30a suppressed the migration and invasiveness phenotypes of breast cancer cell lines. Moreover, reduced tumor expression of miR-30a in breast cancer patients was associated with an unfavorable outcome, including late tumor stage, lymph node metastasis, and worse progression (mortality and recurrence) (p < 0.05). In conclusion, these findings suggest a role for miR-30a in inhibiting breast tumor invasiveness and metastasis. The finding that miR-30a downmodulates vimentin expression might provide a therapeutic target for the treatment of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.