In this work, we try to incorporate the inorganic system into the biodegradable polymers to compose an organic/inorganic polymer hybrid. Various nanocomposites of poly(butylene succinates) (PBS) with different ratios of organically modified layered silicates (OMLS) prepared by solution blending were investigated. The OMLS used for the preparation of nanocomposites were functionalized ammonium salts modified montmorillonite. The effects of OMLS on the nanocomposites were investigated by XRD, TEM, DMA and TGA in the aspect of the d-spacing of clay, mechanical and thermal properties. Interestingly, all these nanocomposites exhibited improved properties when compared with the pristine PBS sample. XRD indicates that the layers of clay were intercalated by the modifiers, and the interlayer distance of organoclay in the nanocomposites could be extended to about 29.4 angstrom. Moreover, the thermal stability of the nanocomposites was enhanced by the addition of organoclay via TGA study, closely related to the organoclay content in the PBS matrix. DMA data shows that the storage and loss moduli were concurrently enhanced by the addition of organoclay as compared to the pristine PBS sample. Moreover, the glass transition temperatures also increased about 5 to 20 degrees C (from DMA, peak of tan delta) for the various organoclay-containing samples. The enhanced mechanical and thermal properties can be achieved from these organoclay modified-nanocomposites
The analytical potential of attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy has been tested on the following wood-plastic composites (WPCs): high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS), and a recycled plastic (rHDPE). The data set of ATR-FTIR spectra has been analyzed by principal component analysis (PCA) and the studied samples could be grouped according to their polymeric matrixes. Additionally, ATR-FTIR spectroscopy proved to be a useful tool for determining the distribution profile of wood and plastic materials within different types of WPCs. Accordingly, the plastic content of the surface layers of HDPE, rHDPE, and PP composites was significantly higher than that of the core layer, whereas homogenous dispersion was observed in the LDPE composite. Among all WPCs, the PS composite displayed the worst dispersion.
The purpose of this work is to compare the weathering properties of different types of wood-plastic composites (WPCs) based on high-density polyethylene (HDPE), recycled high-density polyethylene (rHDPE-I and rHDPE-II), low-density polyethylene (LDPE), polypropylene (PP), recycled polypropylene (rPP), polystyrene (PS), and recycled polystyrene (rPS). The modulus of rupture (MOR) and modulus of elasticity (MOE) of all WPCs decreased with increasing exposure time of weathering. Of these, the rHDPE-II-based composite exhibited the highest MOR and MOE retention ratios after 2000 h of accelerated ultraviolet (UV) weathering, while the PS-based WPC had the lowest values. In addition, the carbonyl index difference (CID) of various WPCs increased significantly as a function of exposure time. Among them, the PS-based WPCs exhibited the most severe degradation due to photo-oxidation on the surface, while the degradation of PE-based WPCs was the mildest. These results are consistent with the change in the surface cracking and flexural properties of the composites. The PS-based WPCs also exhibited higher moisture diffusion coefficients. The mechanical behavior of WPCs after weathering is influenced by a combination of factors, such as surface oxidation, morphology changes, and moisture absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.