The mosquito Aedes aegypti is the principal vector for arboviruses including dengue/yellow fever, chikungunya, and Zika virus, infecting hundreds of millions of people annually. Unfortunately, traditional control methodologies are insufficient, so innovative control methods are needed. To complement existing measures, here we develop a molecular genetic control system termed precision-guided sterile insect technique (pgSIT) in Aedes aegypti. PgSIT uses a simple CRISPR-based approach to generate flightless females and sterile males that are deployable at any life stage. Supported by mathematical models, we empirically demonstrate that released pgSIT males can compete, suppress, and even eliminate mosquito populations. This platform technology could be used in the field, and adapted to many vectors, for controlling wild populations to curtail disease in a safe, confinable, and reversible manner.
Raphanus sativus, a common cruciferous vegetable has been attributed to possess a number of pharmacological and therapeutic properties. It has been used in indigenous system of medicine for the treatment of various human ailments in India. This present study evaluated the chemopreventive efficacy of different parts of R. sativus such as root, stem and leaves, extracted with solvents of varying polarity and investigated the molecular mechanism leading to growth arrest and apoptotic cell death in human cancer cell lines. Of the different parts, significant growth inhibitory effect was observed with hexane extract of R. sativus root. Analysis of hexane extract by GC-MS revealed the presence of several isothiocyanates (ITCs) such as 4-(methylthio)-3-butenyl isothiocyanate (MTBITC), 4-(methylthio)-3-butyl isothiocyanate (erucin), 4-methylpentyl isothiocyanate, 4-pentenyl isothiocyanate and sulforaphene. R. sativus root extract induced cell death both in p53 proficient and p53 deficient cell lines through induction of apoptotic signaling pathway regardless of the p53 status of cells. The molecular mechanisms underlying R. sativus-induced apoptosis may involve interactions among Bcl(2) family genes, as evidenced by up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic genes along with activation of Caspase-3. Our findings present the first evidence that hexane extract of R. sativus root exerts potential chemopreventive efficacy and induces apoptosis in cancer cell lines through modulation of genes involved in apoptotic signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.