Respiratory Syncytial Virus (RSV) is responsible for considerable morbidity and mortality worldwide and is the most important respiratory viral pathogen in infants. Extensive sequence variability within and between RSV group A and B viruses and the ability of multiple clades and sub-clades of RSV to co-circulate are likely mechanisms contributing to the evasion of herd immunity. Surveillance and large-scale whole-genome sequencing of RSV is currently limited but would help identify its evolutionary dynamics and sites of selective immune evasion. In this study, we performed complete-genome next-generation sequencing of 92 RSV isolates from infants in central Tennessee during the 2012–2014 RSV seasons. We identified multiple co-circulating clades of RSV from both the A and B groups. Each clade is defined by signature N- and O-linked glycosylation patterns. Analyses of specific RSV genes revealed high rates of positive selection in the attachment (G) gene. We identified RSV-A viruses in circulation with and without a recently reported 72-nucleotide G gene sequence duplication. Furthermore, we show evidence of convergent evolution of G gene sequence duplication and fixation over time, which suggests a potential fitness advantage of RSV with the G sequence duplication.
Purpose It has long been held that parity reduces risk of breast cancer. However, accumulating evidence indicates that the effects of parity, as well as breast feeding, may vary according to estrogen receptor (ER) status. We evaluated these associations in a case-control study among African-American women New York City and New Jersey. Methods In the Women’s Circle of Health Study (WCHS), including 786 African-American women with breast cancer and 1015 controls, data on reproductive histories were collected from in-person interviews, with tumor characteristics abstracted from pathology reports. We calculated number of live births and months breastfeeding for each child, and examined each in relation to breast cancer by ER status, and for triple negative (TN) breast cancer. Results Although associations were not statistically significant, having children was associated with reduced risk of ER+ breast cancer (odds ratio (OR) 0.82, 95% confidence interval (CI); 0.58–1.16), but increased risk of ER - tumors, with associations most pronounced for TN breast cancer (OR=1.81, 95% CI 0.93–3.51). Breastfeeding gave no additional benefit for ER+ cancer, but reduced the risk of ER− disease associated with parity. Conclusions Accumulating data from a number of studies, as well as our own in African-American women, indicate that the effects of parity and breastfeeding differ by ER status. African-American women are more likely to have children and not to breastfeed, and to have ER - and TN breast cancer; it is possible that breastfeeding in this population could reduce risk of more aggressive breast cancers.
Respiratory viruses alter the nasopharyngeal microbiome and may be associated with a distinct microbial signature. To test this hypothesis, we compared the nasopharyngeal microbiome of 135 previously healthy infants with acute respiratory infection due to human rhinovirus (HRV; n = 52) or respiratory syncytial virus (RSV; n = 83). The nasopharyngeal microbiome was assessed by sequencing the V4 region of the 16S ribosomal RNA. Respiratory viruses were identified by quantitative reverse-transcription polymerase chain reaction. We found significant differences in the overall taxonomic composition and abundance of certain bacterial genera between infants infected with HRV and those infected with RSV. Our results suggest that respiratory tract viral infections are associated with different nasopharyngeal microbial profiles.
There are limited data on meconium and faecal bacterial profiles from African infants and their mothers. We characterized faecal bacterial communities of infants and mothers participating in a South African birth cohort. Stool and meconium specimens were collected from 90 mothers and 107 infants at birth, and from a subset of 72 and 36 infants at 4–12 and 20–28 weeks of age, respectively. HIV-unexposed infants were primarily exclusively breastfed at 4–12 (49%, 26/53) and 20–28 weeks (62%, 16/26). In contrast, HIV-exposed infants were primarily exclusively formula fed at 4–12 (53%; 10/19) and 20–28 weeks (70%, 7/10). Analysis (of the bacterial 16S rRNA gene sequences of the V4 hypervariable region) of the 90 mother-infant pairs showed that meconium bacterial profiles [dominated by Proteobacteria (89%)] were distinct from those of maternal faeces [dominated by Firmicutes (66%) and Actinobacteria (15%)]. Actinobacteria predominated at 4–12 (65%) and 20–28 (50%) weeks. HIV-exposed infants had significantly higher faecal bacterial diversities at both 4–12 (p = 0.026) and 20–28 weeks (p = 0.002). HIV-exposed infants had lower proportions of Bifidobacterium (p = 0.010) at 4–12 weeks. Maternal faecal bacterial profiles were influenced by HIV status, feeding practices and mode of delivery. Further longitudinal studies are required to better understand how these variables influence infant and maternal faecal bacterial composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.