Background The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. Methods In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. Results Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. Conclusions Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.
Motivation Transcriptome-based gene co-expression analysis has become a standard procedure for structured and contextualized understanding and comparison of different conditions and phenotypes. Since large study designs with a broad variety of conditions are costly and laborious, extensive comparisons are hindered when utilizing only a single data set. Thus, there is an increased need for tools that allow the integration of multiple transcriptomic data sets with subsequent joint analysis, which can provide a more systematic understanding of gene co-expression and co-functionality within and across conditions. To make such an integrative analysis accessible to a wide spectrum of users with differing levels of programming expertise it is essential to provide user-friendliness and customizability as well as thorough documentation. Results This paper introduces horizontal CoCena (hCoCena: horizontal construction of co-expression networks and analysis), an R-package for network-based co-expression analysis that allows the analysis of a single transcriptomic data set as well as the joint analysis of multiple data sets. With hCoCena we provide a freely available, user-friendly, and adaptable tool for integrative multi-study or single-study transcriptomics analyses alongside extensive comparisons to other existing tools. Availability The hCoCena R-package is provided together with R Markdowns that implement an exemplary analysis workflow including extensive documentation and detailed descriptions of data structures and objects. Such efforts not only make the tool easy to use but also enable the seamless integration of user-written scripts and functions into the workflow, creating a tool that provides a clear design while remaining flexible and highly customizable. The package and additional information including an extensive Wiki are freely available on GitHub: https://github.com/MarieOestreich/hCoCena. The version at the time of writing has been added to Zenodo under the following link: https://doi.org/10.5281/zenodo.6911782 Supplementary information Supplementary data are available at Bioinformatics online.
The stem cell–specific RNA-binding protein TRIM71/LIN-41 was the first identified target of the prodifferentiation and tumor suppressor miRNA let-7. TRIM71 has essential functions in embryonic development and a proposed oncogenic role in several cancer types, such as hepatocellular carcinoma. Here, we show that TRIM71 regulates let-7 expression and activity via two independent mechanisms. On the one hand, TRIM71 enhances pre-let-7 degradation through its direct interaction with LIN28 and TUT4, thereby inhibiting let-7 maturation and indirectly promoting the stabilization of let-7 targets. On the other hand, TRIM71 represses the activity of mature let-7 via its RNA-dependent interaction with the RNA-induced silencing complex (RISC) effector protein AGO2. We found that TRIM71 directly binds and stabilizes let-7 targets, suggesting that let-7 activity inhibition occurs on active RISCs. MiRNA enrichment analysis of several transcriptomic data sets from mouse embryonic stem cells and human hepatocellular carcinoma cells suggests that these let-7 regulatory mechanisms shape transcriptomic changes during developmental and oncogenic processes. Altogether, our work reveals a novel role for TRIM71 as a miRNA repressor and sheds light on a dual mechanism of let-7 regulation, uncovering a bistable switch between TRIM71 and let-7 miRNAs that regulates the balance between proliferation and differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.