We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value G Z M 0.34 6 0.09 6 0.04 6 0.05 n.m. at Q 2 0.1 ͑GeV͞c͒ 2 . [S0031-9007(97)03181-5] PACS numbers: 13.60. Fz, 11.30.Er, 13.40.Gp, 14.20.Dh The measurement of strange quark-antiquark (ss) effects in the nucleon offers a unique window to study the effects of the qq "sea" at low momentum transfers. This information is an important clue to the dynamical effects of QCD that are responsible for form factors in the nonperturbative regime, and may lead to new insight into the origins of these effects.It has been shown [1] that the neutral weak current can be used to determine the ss contributions to nucleon form factors. The magnetic moment is one important nucleon property that can be studied in this fashion. The neutral weak magnetic form factor of the proton can be measured in parity-violating electron scattering, [2], thus providing information on the ss content of the nucleon's magnetic moment. In this Letter, we report the first such measurement and obtain the first direct experimental data relevant to determination of the strange magnetic moment of the proton.To lowest order (tree-level), the neutral weak magnetic form factor of the proton G Z M can be related to nucleon electromagnetic form factors and a contribution from strange quarks: As mentioned above, the quantity G Z M for the proton can be measured via elastic parity-violating electron scattering at backward angles [2]. The difference in cross sections for right and left handed incident electrons arises from interference of the electromagnetic and neutral weak amplitudes, and so contains products of electromagnetic and neutral weak form factors. The expression for elastic scattering from the proton is given by
We report new precise H(e,e(')p)pi(0) measurements at the Delta(1232) resonance at Q(2)=0.127 (GeV/c)(2) obtained at the MIT-Bates out-of-plane scattering facility which are particularly sensitive to the transverse electric amplitude (E2) of the gamma(*)N-->Delta transition. The new data have been analyzed together with those of earlier measurements to yield precise quadrupole to dipole amplitude ratios: Re(E(3/2)(1+)/M(3/2)(1+))=(-2.3+/-0.3(stat+syst)+/-0.6(model))% and Re(S(3/2)(1+)/M(3/2)(1+))=(-6.1+/-0.2(stat+syst)+/-0.5(model))% for M(3/2)(1+)=(41.4+/-0.3(stat+syst)+/-0.4(model))(10(-3)/m(pi(+))). The derived amplitudes give credence to the conjecture of deformation in hadrons favoring, at low Q2, the dominance of mesonic effects.
The Jefferson Lab Q weak experiment determined the weak charge of the proton by measuring the parityviolating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ep asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 µA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicitycorrelated beam properties that can induce false asymmetries. Møller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8• and 11.6• were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silicaČerenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q 2 = 0.025 GeV 2 was determined using dedicated low-current (∼100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet.
A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm −1 . This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.