A precision mass investigation of the neutron-rich titanium isotopes 51−55 Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure and the overall uncertainties of the 52−55 Ti mass values were significantly reduced. Our results conclusively establish the existence of weak shell effect at N = 32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITAN's Penning trap mass spectrometer.Atomic nuclei are highly complex quantum objects made of protons and neutrons. Despite the arduous efforts needed to disentangle specific effects from their many-body nature, the fine understanding of their structures provides key information to our knowledge of fundamental nuclear forces. One notable quantum behavior of bound nuclear matter is the formation of shell-like structures for each fermion group [1], as electrons do in atoms. Unlike for atomic shells, however, nuclear shells are known to vanish or move altogether as the number of protons or neutrons in the system changes [2]. Particular attention has been given to the emergence of strong shell effects among nuclides with 32 neutrons, pictured in a shell model framework as a full valence ν2p 3/2 orbital. Across most of the known nuclear chart, this orbital is energetically close to ν1f 5/2 , which prevents the appearance of shell signatures in energy observables. However, the excitation energies of the lowest 2 + states show a relative, but systematic, local increase below proton number Z = 24 [3]. This effect, characteristic of shell closures, has been attributed in shell model calculations to the weakening of attractive proton-neutron interactions between the ν1f 5/2 and π1f 7/2 orbitals as the latter empties, making the neutrons in the former orbital less bound [4,5]. Ab initio calculations are also extending their reach over this sector of the nuclear chart, yet no systematic investigation of the N = 32 isotones has been produced so far.
The nEXO neutrinoless double beta (0νββ) decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in 136Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of 1028 years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector. The more detailed knowledge of the detector construction has been paired with more assays for trace radioactivity in different materials. In particular, the use of custom electroformed copper is now incorporated in the design, leading to a substantial reduction in backgrounds from the intrinsic radioactivity of detector materials. Furthermore, a number of assumptions from previous sensitivity projections have gained further support from interim work validating the nEXO experiment concept. Together these improvements and updates suggest that the nEXO experiment will reach a half-life sensitivity of 1.35 × 1028 yr at 90% confidence level in 10 years of data taking, covering the parameter space associated with the inverted neutrino mass ordering, along with a significant portion of the parameter space for the normal ordering scenario, for almost all nuclear matrix elements. The effects of backgrounds deviating from the nominal values used for the projections are also illustrated, concluding that the nEXO design is robust against a number of imperfections of the model.
The levels in 26 Na with single particle character have been observed for the first time using the d( 25 Na,pγ) reaction at 5 MeV/nucleon. The measured
Proton inelastic scattering off a neutron halo nucleus, 11 Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11 Li beam, a strongly populated excited state in 11 Li was observed at E x =0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transition, the strength is evaluated to be ex- * Corresponding author.
The elusive β − p + decay was observed in 11 Be by directly measuring the emitted protons and their energy distribution for the first time with the prototype Active Target Time Projection Chamber (pAT-TPC) in an experiment performed at ISAC-TRIUMF. The measured β − p + branching ratio is orders of magnitude larger than any previous theoretical model predicted. This can be explained by the presence of a narrow resonance in 11 B above the proton separation energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.