A tearing mode with m = 3 and n = 2, destabilized in the steady state high-β p H-mode discharges with edge localized mode (ELM), was completely stabilized by local heating and current drive using the 110 GHz first harmonic O-mode electron cyclotron (EC) wave. Here, m and n are poloidal and toroidal mode numbers, respectively. The optimum EC wave injection angle was determined by identifying the mode location from an electron temperature perturbation profile and a safety factor profile. The optimum injection angle was also determined by scanning a steerable mirror during a discharge. In a typical discharge where the tearing mode is completely stabilized, the ratio of the electron cyclotron heating power to the total heating power is 0.17, and the ratio of the EC driven current to the total plasma current is 0.02. Stored energy and neutron emission rate were higher for the case with EC wave injection than that without EC wave injection, which suggests that the reduction of the stored energy and the neutron emission rate was recovered by the tearing mode stabilization.
The design progress in a compact low aspect ratio (low A) DEMO reactor, ‘SlimCS’, and its design issues are reported. The design study focused mainly on the torus configuration including the blanket, divertor, materials and maintenance scheme. For continuity with the Japanese ITER-TBM, the blanket is based on a water-cooled solid breeder blanket. For vertical stability of the elongated plasma and high beta access, the blanket is segmented into replaceable and permanent blankets and a sector-wide conducting shell is arranged inbetween these blankets. A numerical calculation indicates that fuel self-sufficiency can be satisfied when the blanket interior is ideally fabricated. An allowable heat load to the divertor plate should be 8 MW m−2 or lower, which can be a critical constraint for determining a handling power of DEMO.
Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (q min) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control q min. The real-time control of q min is demonstrated in a high-β plasma, where q min follows the temporally changing reference q min,ref from 1.3 to 1.7. Applying the control to another high-β discharge (βN = 1.7, βp = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), q min was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6–0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement.
Experiments have been carried out in JT-60U to verify the modelling of fast ion ripple transport. The ripple induced loss was estimated from the neutron decay following neutral beam pulse injection and the loss related heat load on the first wall. Comparison of the lost fraction and the hot spot positions between measurements and orbit following Monte Carlo calculations exhibited good agreement, indicating that the ripple transport governing fast ion losses is explained within the framework of existing theory. Neutral beam heating experiments in JT-60U also indicate that H modes free of ELMs are still obtainable for ripple amplitudes of up to 2.2%
Quasi-steady-state high βp H mode discharges performed by suppressing neoclassical tearing modes (NTMs) are described. Two operational scenarios have been developed for long sustainment of the high βp H mode discharge: NTM suppression by profile optimization, and NTM stabilization by local electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH) at the magnetic island. Through optimization of pressure and safety factor profiles, a high βp H mode plasma with H89PL = 2.8, HHy,2 = 1.4, βp ≈ 2.0 and βN ≈ 2.5 has been sustained for 1.3 s at small values of collisionality νe * and ion Larmor radius ρi * without destabilizing the NTMs. Characteristics of the NTMs destabilized in the region with central safety factor above unity are investigated. The relation between the beta value at the mode onset β on N and that at the mode disappearance β off N can be described as β off N /β on N = 0.05-0.4, which shows the existence of hysteresis. The value of βN /ρi * at the onset of an m/n = 3/2 NTM has a collisionality dependence, which is empirically given by βN /ρi * ∝ ν 0.36 e * . However, the profile effects such as the relative shapes of pressure and safety factor profiles are equally important. The onset condition seems to be affected by the strength of the pressure gradient at the mode rational surface. Stabilization of the NTM by local ECCD/ECH at the magnetic island has been attempted. A 3/2 NTM has been completely stabilized by EC wave injection of 1.6 MW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.