Over 100 trigonometric parallaxes and proper motions for masers associated with young, high-mass stars have been measured with the Bar and Spiral Structure Legacy Survey, a Very Long Basline Array key science project, the European VLBI Network, and the Japanese VERA project. These measurements provide strong evidence for the existence of spiral arms in the Milky Way, accurately locating many arm segments and yielding spiral pitch angles ranging from about 7 • to 20 • . The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the Milky Way with the 3-dimensional position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, R 0 , to be 8.34 ± 0.16 kpc, a circular rotation speed at the Sun, Θ 0 , to be 240 ± 8 km s −1 , and a rotation curve that is nearly flat (i.e., a slope of −0.2 ± 0.4 km s −1 kpc −1 )
We compile and analyze approximately 200 trigonometric parallaxes and proper motions of molecular masers associated with very young high-mass stars. Most of the measurements come from the BeSSeL Survey using the VLBA and
Context. The Galactic center is the closest region where we can study star formation under extreme physical conditions like those in high-redshift galaxies. Aims. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. Methods. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H 2 CO) transitions. We used the 3 2,1 −2 2,0 / 3 0,3 −2 0,2 line ratio to determine the gas temperature in n ∼ 10 4 −10 5 cm −3 gas. We have produced temperature maps and cubes with 30 and 1 km s −1 resolution and published all data in FITS form. Results. Dense gas temperatures in the Galactic center range from ∼60 K to >100 K in selected regions. The highest gas temperatures T G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km s −1 and 50 km s −1 clouds, and in "The Brick" (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ζ CR < 10 −14 s −1 . Conclusions. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner ∼75 pc are confirmed to be high in the entire CMZ.
Using spectral-line observations of HNCO, N 2 H + , and HNC, we investigate the kinematics of dense gas in the central ∼ 250 pc of the Galaxy. We present scouse (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line-fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, scouse accurately describes the {l, b, v LSR } distribution of Central Molecular Zone (CMZ) gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km s −1 < σ < 53.1 km s −1 . A median dispersion of 9.8 km s −1 , translates to a Mach number, M 3D 28. The gas is distributed throughout several "streams", with projected lengths ∼ 100 − 250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km s −1 clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l, b, v LSR } space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km s −1 and 50 km s −1 clouds and Sgr C.
Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our Galaxy and to determine fundamental parameters such as the rotation velocity (Θ0) and curve and the distance to the Galactic center (R0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0 and Θ0 need a substantial revision. In particular the combination of 8.5 kpc and 220 km s −1 can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr A* gives best values of R0 = 8.3 ± 0.23 kpc and Θ0 = 239 or 246 ± 7 km s −1 , for Solar motions of V = 12.23 and 5.25 km s −1 , respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) Survey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.