Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on proton–proton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin–parity JP=0+JP=0+ hypothesis is compared with alternative hypotheses using the Higgs boson decays H→γγH→γγ, H→ZZ⁎→4ℓH→ZZ⁎→4ℓ and H→WW⁎→ℓνℓνH→WW⁎→ℓνℓν, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb−1 collected at a centre-of-mass energy of √s=8TeV. For the H→ZZ⁎→4ℓH→ZZ⁎→4ℓ decay mode the dataset corresponding to an integrated luminosity of 4.6 fb−1 collected at √s=7TeV is included. The data are compatible with the Standard Model JP=0+JP=0+ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this Letter, namely some specific JP=0−,1+,1−,2+JP=0−,1+,1−,2+ models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the JP=2+JP=2+ model, of the relative fractions of gluon-fusion and quark–antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferre
Studies of the spin, parity and tensor couplings of the Higgs boson in the , and decay processes at the LHC are presented. The investigations are based on of pp collision data collected by the ATLAS experiment at TeV and TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers , is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the and decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.
A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb −1 of proton-proton collisions data at ffiffi ffi s p ¼ 7 TeV and 20.3 fb −1 at ffiffi ffi s p ¼ 8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ ¼ 1.17 AE 0.27 at the value of the Higgs boson mass measured by ATLAS, m H ¼ 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m H . They are found to be μ ggF ¼ 1.32 AE 0.38, μ VBF ¼ 0.8 AE 0.7, μ WH ¼ 1.0 AE 1.6, μ ZH ¼ 0.1 þ3.7 −0.1 , and μ ttH ¼ 1.6 þ2.7 −1.8 , for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.
Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at √(s)NN=2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14 nb(-1), respectively. The jets are identified with the anti-k(t) algorithm with R=0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.