In the present paper, an analytically investigated domain of decentered parameter and its effect on the self-focusing of Hermit-cosh-Gaussian (HChG) laser beams in a collisional plasma have been studied theoretically. The nonlinearity in the dielectric constant of plasma arising due to the nonuniform heating of carriers along the wavefront of the laser beam has been employed in the present investigation. The nonlinear differential equation of beam width parameter for various laser modes of HChG beam is obtained by following the standard Akhamanov's parabolic equation approach under Wentzel-Kramers-Brillouin and paraxial approximations. The analytical treatment has enabled us to define three distinct regions: self-focusing, self-trapping and defocusing, which are presented graphically.
In this paper, self-focusing of asymmetric cosh-Gaussian laser beams in collisionless magnetized plasma has been studied. The non-linearity in dielectric constant considered herein is mainly due to the ponderomotive force. The non-linear coupled differential equations for the beam width parameters in transverse dimensions of the beam have been obtained by using WKB and paraxial approximations under parabolic equation approach. The numerical computation is completed by using fourth-order Runge–Kutta method. The effect of unlike decentered parameters in both transverse dimensions of the beam on self-focusing of cosh-Gaussian beams has been presented. Further, the effect of the static magnetic field and polarization modes of the laser has been explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.