This Letter presents experimental confirmation of the presence of zonal flows in magnetically confined toroidal plasma using an advanced diagnostic system -dual heavy ion beam probes. The simultaneous observation of an electric field at two distant toroidal locations ( 1:5 m apart) in the high temperature ( 1 keV) plasma provides a fluctuation spectrum of electric field (or flow), a spatiotemporal structure of the zonal flows (characteristic radial length of 1:5 cm and lifetime of 1:5 ms), their long-range correlation with toroidal symmetry n 0 , and the difference in the zonal flow amplitude with and without a transport barrier. These constitute essential elements of turbulence-zonal flow systems, and illustrate one of the fundamental processes of structure formation in nature. Zonal flows-azimuthally symmetric bandlike shear flows-are ubiquitous phenomena in the Universe [1][2][3]; examples include Jovian belts and zones, the terrestrial atmospheric jet stream, the super-rotation of the Venusian atmosphere, and the rotation profile of the solar tachocline. Zonal flows have been expected to be present in magnetically confined toroidal plasmas [4] since the characteristics of drift wave turbulence in the plasmas are analogous to Rossby wave turbulence to cause the phenomena in the rotating planets. Recently, their crucial role in determining the turbulent level and resultant transport has been widely recognized, and the identification of the zonal flows becomes an urgent issue in the fusion research to enhance the prospect of plasma burning in the International Thermonuclear Experimental Reactor [5][6][7].In toroidal plasmas, the zonal flows emerge in electric field fluctuation symmetric m n 0 on magnetic flux surface with finite radial wave numbers (see for review, e.g., [8,9]). Two major branches of zonal flows are expected in magnetic confined toroidal plasmas, i.e., a residual flow of nearly zero frequency, and an oscillatory flow termed geodesic acoustic modes (GAMs) [10,11]. These zonal flows are driven exclusively by nonlinear interactions (or inverse cascade) through energy transfer from the microscopic drift waves. Inversely, the zonal flows regulate the drift wave turbulence and resultant transports. The time-varying E B shearing of zonal flows, similar to the mean flows [12], has a significant effect on plasma turbulence and transport.Direct nonlinear simulations have, in fact, confirmed the appearance of and generation processes for zonal flows [13][14][15][16][17][18][19][20], and their essential role in turbulence and transport of toroidal plasmas. In experiments, however, only indirect signs have been obtained for zonal flows and their role in confinement. Coherent oscillations presumed to be GAMs were detected in measurements with a heavy ion beam probe (HIBP) [21,22], with traditional probes [23,24], and with beam emission spectroscopy using a modified time-delayed-estimation analysis technique [25]. Bicoherence analysis showed an increase in nonlinear interaction between zonal flows and turbule...
OVERVIEW OF THE LARGE HELICAL DEVICE PROJECT. The Large Helical Device (LHD) has successfully started running plasma confinement experiments after a long construction period of eight years. During the construction and machine commissioning phases, a variety of milestones were attained in fusion engineering which successfully led to the first operation, and the first plasma was ignited on 31 March 1998. Two experimental campaigns are planned in 1998. In the first campaign, the magnetic flux mapping clearly demonstrated a nested structure of magnetic surfaces. The first plasma experiments were conducted with second harmonic 84 and 82.6 GHz ECH at a heating power input of 0.35 MW. The magnetic field was set at 1.5 T in these campaigns so as to accumulate operational experience with the superconducting coils. In the second campaign, auxiliary heating with NBI at 3 MW has been carried out. Averaged electron densities of up to 6 × 10 19 m-3 , central temperatures ranging from 1.4 IAEA-F1-CN-69/OV1/4 2 to 1.5 keV and stored energies of up to 0.22 MJ have been attained despite the fact that the impurity level has not yet been minimized. The obtained scarling of energy confinement time has been found to be consistent with the ISS95 scaling law with some enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.