Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton–proton collision data set recorded with the CMS detector in 2016 at , corresponding to an integrated luminosity of 35.9 . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a or boson, or a top quark-antiquark pair) and the following decay modes: , , , , , and . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be , assuming a Higgs boson mass of . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb −1 of proton-proton collisions at √ s = 13 TeV, are described. When combined with previous VH measurements using data collected at √ s = 7, 8, and 13 TeV, an excess of events is observed at m H = 125 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01 ± 0.22. The combination of this result with searches by the CMS experiment for H → bb in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04 ± 0.20.
The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of sqrt[s]=7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9 fb^{-1}, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, τ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26_{-0.26}^{+0.31}.
Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at √ s = 13 TeV corresponding to an integrated luminosity of up to 36 fb −1 . A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W bosons below 3.3 TeV, Z bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks. IntroductionModels of physics that extend the standard model (SM) often require new particles that couple to quarks (q) and/or gluons (g) and decay to dijets. The natural width of resonances in the dijet mass (m jj ) spectrum increases with the coupling, and may vary from narrow to broad compared to the experimental resolution. For example, in a model in which dark matter (DM) particles couple to quarks through a DM mediator, the mediator can decay to either a pair of DM particles or a pair of jets and therefore can be observed as a dijet resonance [1, 2] that is either narrow or broad, depending on the strength of the coupling. When the resonance is broad, its observed line-shape depends significantly on the resonance spin. Here we report a search for narrow dijet resonances and a complementary search for broad resonances that considers multiple values of the resonance spin and widths as large as 30% of the resonance mass. Both approaches are sensitive to resonances with intrinsic widths that are small compared to the experimental resolution, but the broad resonance search is also sensitive to resonances with larger intrinsic widths. We explore the implications for multiple specific models of dijet resonances and for a range of quark coupling strength for a DM mediator.We present model independent results for s-channel dijet resonances and apply the results to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.