Abstract-The world-wide procurement of Nb 3 Sn and NbTi for the ITER superconducting magnet systems will involve eight to ten strand suppliers from six Domestic Agencies (DAs) on three continents. To ensure accurate and consistent measurement of the physical and superconducting properties of the composite strand, a strand test facility benchmarking effort was initiated in August 2008. The objectives of this effort are to assess and improve the superconducting strand test and sample preparation technologies at each DA and supplier, in preparation for the more than ten thousand samples that will be tested during ITER procurement.The present benchmarking includes tests for critical current ( c ),-index, hysteresis loss ( hys ), residual resistivity ratio ( ), Future benchmarking efforts will include an annual cross-check of supplier and DA facilities, and also a round of internal tin Nb 3 Sn samples to assess each contributor's sample-preparation techniques. A separate round of NbTi benchmarking is also envisioned.
Helical coils of the Large Helical Device are pool-cooled superconducting magnets. The operating current is restricted below about 90% of the design current because a normal-zone has propagated dynamically at several times at almost the same current. In order to estimate the effect of lowering temperatures on the cryogenic stability, an R&D coil was made of the same conductor. The cryogenic stability of the R&D coil was examined in saturated and subcooled helium. A normal-zone was initiated by a heater inserted between the conductor and the layer to layer spacer. The propagation was detected by voltage taps. In saturated helium of 4.4 K and 0.12 MPa, the minimum current to begin propagation is 10.7 to 10.8 kA. It becomes higher at the lower temperature, and it exceeds 11.7 kA in subcooled helium of 3.5 K as a temperature inside the R&D coil.Index Terms-Aluminum stabilizer, dynamic stability, minimum propagating current, subcooled helium.
Abstract-Transient normal-transitions have been observed in the superconducting helical coils of the Large Helical Device (LHD). Stability tests have been performed for an R&D coil as an upgrading program of LHD, and we observed asymmetrical propagation of an initiated normal-zone. In some conditions, a normal-zone propagates only in one direction along the conductor and it hence forms a traveling normal-zone. The Hall electric field generated in the longitudinal direction in the aluminum stabilizer is a plausible candidate to explain the observed asymmetrical normal-zone propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.