November 11, 2016/65(44);1234–1237. What is already known about this topic? Candida auris is an emerging pathogenic fungus that has been reported from at least a dozen countries on four continents during 2009–2015. The organism is difficult to identify using traditional biochemical methods, some isolates have been found to be resistant to all three major classes of antifungal medications, and C. auris has caused health care–associated outbreaks. What is added by this report? This is the first description of C. auris cases in the United States. C. auris appears to have emerged in the United States only in the last few years, and U.S. isolates are related to isolates from South America and South Asia. Evidence from U.S. case investigations suggests likely transmission of the organism occurred in health care settings. What are the implications for public health practice? It is important that U.S. laboratories accurately identify C. auris and for health care facilities to implement recommended infection control practices to prevent the spread of C. auris. Local and state health departments and CDC should be notified of possible cases of C. auris and of isolates of C. haemulonii and Candida spp. that cannot be identified after routine testing.
Summary Background Transmission of multidrug-resistant Candida auris infection has been reported in the USA. To better understand its emergence and transmission dynamics and to guide clinical and public health responses, we did a molecular epidemiological investigation of C auris cases in the USA. Methods In this molecular epidemiological survey, we used whole-genome sequencing to assess the genetic similarity between isolates collected from patients in ten US states (California, Connecticut, Florida, Illinois, Indiana, Maryland, Massachusetts, New Jersey, New York, and Oklahoma) and those identified in several other countries (Colombia, India, Japan, Pakistan, South Africa, South Korea, and Venezuela). We worked with state health departments, who provided us with isolates for sequencing. These isolates of C auris were collected during the normal course of clinical care (clinical cases) or as part of contact investigations or point prevalence surveys (screening cases). We integrated data from standardised case report forms and contact investigations, including travel history and epidemiological links (ie, patients that had shared a room or ward with a patient with C auris). Genetic diversity of C auris within a patient, a facility, and a state were evaluated by pairwise differences in single-nucleotide polymorphisms (SNPs). Findings From May 11, 2013, to Aug 31, 2017, isolates that corresponded to 133 cases (73 clinical cases and 60 screening cases) were collected. Of 73 clinical cases, 66 (90%) cases involved isolates related to south Asian isolates, five (7%) cases were related to South American isolates, one (1%) case to African isolates, and one (1%) case to east Asian isolates. Most (60 [82%]) clinical cases were identified in New York and New Jersey; these isolates, although related to south Asian isolates, were genetically distinct. Genomic data corroborated five (7%) clinical cases in which patients probably acquired C auris through health-care exposures abroad. Among clinical and screening cases, the genetic diversity of C auris isolates within a person was similar to that within a facility during an outbreak (median SNP difference three SNPs, range 0–12). Interpretation Isolates of C auris in the USA were genetically related to those from four global regions, suggesting that C auris was introduced into the USA several times. The five travel-related cases are examples of how introductions can occur. Genetic diversity among isolates from the same patients, health-care facilities, and states indicates that there is local and ongoing transmission.
Candida auris is an emerging yeast that causes healthcare-associated infections. It can be misidentified by laboratories and often is resistant to antifungal medications. We describe an outbreak of C. auris infections in healthcare facilities in New York City, New York, USA. The investigation included laboratory surveillance, record reviews, site visits, contact tracing with cultures, and environmental sampling. We identified 51 clinical case-patients and 61 screening case-patients. Epidemiologic links indicated a large, interconnected web of affected healthcare facilities throughout New York City. Of the 51 clinical case-patients, 23 (45%) died within 90 days and isolates were resistant to fluconazole for 50 (98%). Of screening cultures performed for 572 persons (1,136 total cultures), results were C. auris positive for 61 (11%) persons. Environmental cultures were positive for samples from 15 of 20 facilities. Colonization was frequently identified during contact investigations; environmental contamination was also common.
Both dogs and humans can be coinfected with variousEhrlichia, Bartonella, Rickettsia, and Babesia species. We investigated a kennel of sick Walker Hounds and their owners in southeastern North Carolina for evidence of tick-borne infections and associated risk factors. A high degree of coinfection was documented in the dog population. Of the 27 dogs, 26 were seroreactive to an Ehrlichia sp., 16 toBabesia canis, and 25 to Bartonella vinsonii, and 22 seroconverted to Rickettsia rickettsii antigens. According to PCR results, 15 dogs were infected with Ehrlichia canis, 9 with Ehrlichia chaffeensis, 8 withEhrlichia ewingii, 3 with Ehrlichia equi, 9 with Ehrlichia platys, 20 with a Rickettsiaspecies, 16 with a Bartonella species, and 7 with B. canis. The detection of DNA from any Ehrlichiaspecies was associated with clinical illness and with concurrentB. canis infection (by PCR). Both E. canis and an uncharacterized Rickettsia species appeared to result in chronic or recurrent infection. Death in the dog population was associated with living in a dirt lot rather than the concrete kennel. Of 23 people on whom serologic testing was conducted, eight were seroreactive to Bartonella henselae, one to E. chaffeensis, and one to R. rickettsii antigen; however, none had clinical or hematologic abnormalities consistent with illness caused by these organisms. We conclude that kennel dogs with heavy tick exposure can be infected at a high rate with multiple, potentially zoonotic, tick-borne pathogens. In addition, our findings further illustrate the utility of PCR for documenting coinfection with tick-transmitted pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.