DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c(2), such a detector with its large mass, lowenergy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of (136)Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrinonucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and RD; efforts.
Gamma-ray line signatures can be expected in the very-high-energy (E(γ)>100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical γ-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H.E.S.S. γ-ray instrument, upper limits on linelike emission are obtained in the energy range between ∼ 500 GeV and ∼ 25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic γ-ray line emission, flux limits of (2 × 10(-7) -2 × 10(-5)) m(-2) s(-1) sr(-1) and (1 × 10(-8) -2 × 10(-6)) m(-2) s(-1)sr(-1) are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity-averaged DM annihilation cross section ⟨σv⟩(χχ → γγ) reach ∼ 10(-27) cm(3)s(-1), based on the Einasto parametrization of the Galactic DM halo density profile.
Abstract. We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved -cosmology, astrophysics, nuclear, and particle physics -in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
A search for a very-high-energy (VHE; ≥100 GeV) γ-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r∼45-150 pc from the Galactic center. The background-subtracted γ-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) γ-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual γ-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section (σv) as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of ∼1 TeV, values for (σv) above 3×10(-25) cm(3) s(-1) are excluded for the Einasto density profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.