Gravitationswellen -ein leichtes Zittern der raumzeitVor 1,3 Milliarden Jahren: Seit langer Zeit schon haben sich in einer fernen Galaxie zwei schwarze Löcher umkreist, Gebilde von so ungeheurer Dichte, das selbst Licht ihrer Schwerkraft nicht mehr entweichen kann und von ihnen eingefangen wird. Seit Jahrmillionen haben sie bei ihrem Tanz umeinander mit ihrer masse die Raumzeit verformt und dabei Gravitationswellen abgestrahlt. ihr Abstand wurde dabei immer kleiner, ihre Geschwindigkeit immer höher, bis sie schließlich unter einem gewaltigen Ausbruch von Gravitationswellen zu einem einzelnen schwarzen Loch verschmelzen. Später werden wir diese Wellen GW150914 nennen. Für einen kurzen Augenblick wird durch sie mehr Leistung abgestrahlt als von allen Sternen im gesamten sichtbaren Universum in Form von elektromagnetischer Strahlung zusammen. Diese Gravitationswellen rasen mit Lichtgeschwindigkeit durch das Weltall und lassen auf ihrem Weg die Raumzeit erzittern.25. November 1915: GW150914 ist schon längst in unserer milchstra-
GW170817: Measurements of neutron star radii and equation of state The LIGO Scientific Collaboration and The Virgo Collaboration On August 17, 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parameterization of the defining function p(ρ) of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R 1 = 10.8 +2.0 −1.7 km for the heavier star and R 2 = 10.7 +2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M as required from electromagnetic observations and employ the equation of state parametrization, we further constrain R 1 = 11.9 +1.4 −1.4 km and R 2 = 11.9 +1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on p(ρ) at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 +2.7 −1.7 × 10 34 dyn cm −2 at the 90% level.
at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5
The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low-and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be m g ≤ 4.7 × 10 −23 eV=c 2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.
We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of α= -+ 1.3 1.7 1.4 (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= -+ 53.2 28.2 55.8 Gpc −3 yr −1 (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.