Infrared dark clouds (IRDCs) are potential hosts of the elusive early phases of high-mass star formation (HMSF). Here we conduct an in-depth analysis of the fragmentation properties of a sample of 10 IRDCs, which have been highlighted as some of the best candidates to study HMSF within the Milky Way. To do so, we have obtained a set of large mosaics covering these IRDCs with ALMA at band 3 (or 3 mm). These observations have a high angular resolution (∼ 3″; ∼ 0.05 pc), and high continuum and spectral line sensitivity (∼ 0.15 mJy beam−1 and ∼ 0.2 K per 0.1 km s−1 channel at the N2H+ (1 − 0) transition). From the dust continuum emission, we identify 96 cores ranging from low- to high-mass (M = 3.4 − 50.9M⊙) that are gravitationally bound (αvir = 0.3 − 1.3) and which would require magnetic field strengths of B = 0.3 − 1.0 mG to be in virial equilibrium. We combine these results with a homogenised catalogue of literature cores to recover the hierarchical structure within these clouds over four orders of magnitude in spatial scale (0.01 pc – 10 pc). Using supplementary observations at an even higher angular resolution, we find that the smallest fragments (< 0.02 pc) within this hierarchy do not currently have the mass and/or the density required to form high-mass stars. Nonetheless, the new ALMA observations presented in this paper have facilitated the identification of 19 (6 quiescent and 13 star-forming) cores that retain >16 M⊙ without further fragmentation. These high-mass cores contain trans-sonic non-thermal motions, are kinematically sub-virial, and require moderate magnetic field strengths for support against collapse. The identification of these potential sites of high-mass star formation represents a key step in allowing us to test the predictions from high-mass star and cluster formation theories.
The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg2 of the Galactic plane between ℓ = −60○ and ℓ = +31○ in several molecular transitions, including 13CO (2 – 1) and C18O (2 – 1), thus probing the moderately dense (∼103 cm−3) component of the interstellar medium. With an angular resolution of 30″ and a typical 1σ sensitivity of 0.8–1.0 K at 0.25 km s−1 velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large scale distribution of cold molecular gas in the inner Galaxy. In this paper we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this first data release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic centre and well known star forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
We use the 13CO (2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (scimes) algorithm. This work compiles a cloud catalogue with a total of 10663 molecular clouds, 10300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.