Developing efficient and stable non‐noble electrocatalysts for the oxygen evolution reaction (OER) remains challenging for practical applications. While nickel–iron layered double hydroxides (NiFe‐LDH) are emerging as prominent candidates with promising OER activity, their catalytic performance is still restricted by the limited active sites, poor conductivity and durability. Herein, hierarchical nickel–iron–cobalt LDH nanosheets/carbon fibers (NiFeCo‐LDH/CF) are synthesized through solvent‐thermal treatment of ZIF‐67/CF. Extended X‐ray adsorption fine structure analyses reveal that the Co substitution can stabilize the Fe local coordination environment and facilitate the π‐symmetry bonding orbital in NiFeCo‐LDH/CF, thus modifying the electronic structures. Coupling with the structural advantages, including the largely exposed active surface sites and facilitated charge transfer pathway ensured by CF, the resultant NiFeCo‐LDH/CF exhibits excellent OER activity with an overpotential of 249 mV at 10 mA cm−1 as well as robust stability over 20 h.
A novel high-voltage cathode material Na6Fe5(SO4)8 (NFS) is successfully prepared for sodium-ion batteries for the first time. It is found that the NFS cathode shows a high working voltage of 3.7 V, together with an attractive energy density approaching 450 W h kg−1. And, based on an NFS@5%CNTs cathode and hard carbon (HC) anode, a full NFS@5%CNTs//HC cell can deliver an impressive energy density approaching 350 W h kg−1 and excellent cycling stability over 1000 cycles at 2C.
Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide has been modified by ultrathin Al2O3 coatings via atomic layer deposition (ALD) at a growth rate of 1.12 Å/cycle. All characterizations results including TEM, SEM, XRD and XPS together confirm high conformality and uniformity of the resultant Al2O3 layer on the surface of LiNi0.8Co0.1Mn0.1O2 particles. Coating thickness of the Al2O3 layer is optimized at ~2 nm, corresponding to 20 ALD cycles to enhance the electrochemical performance of Ni-rich cathode materials at extended voltage ranges. As a result, 20 Al2O3 ALD-coated LiNi0.8Co0.1Mn0.1O2 cathode material can deliver an initial discharge capacity of 212.8 mAh/g, and an associated coulombic efficiency of 84.0% at 0.1 C in a broad voltage range of 2.7–4.6 V vs. Li+/Li in the first cycle, which were both higher than 198.2 mAh/g and 76.1% of the pristine LiNi0.8Co0.1Mn0.1O2 without the Al2O3 protection. Comparative differential capacity (dQ/dV) profiles and electrochemical impedance spectra (EIS) recorded in the first and 100th cycles indicated significant Al2O3 ALD coating effects on suppressing phase transitions and electrochemical polarity of the Ni-rich LiNi0.8Co0.1Mn0.1O2 core during reversible lithiation/delithiation. This work offers oxide-based surface modifications with precise thickness control at an atomic level for enhanced electrochemical performance of Ni-rich cathode materials at extended voltage ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.