Over the 6-month treatment period, NBP was effective for improving cognitive and global functioning in patients with subcortical vascular cognitive impairment without dementia and exhibited good safety.
Parkinson's disease (PD) is a neurodegenerative disorder with dysfunction in cortices as well as white matter (WM) tracts. While the changes to WM structure have been extensively investigated in PD, the nature of the functional changes to WM remains unknown. In this study, the regional activity and functional connectivity of WM were compared between PD patients (n = 57) and matched healthy controls (n = 52), based on multimodel magnetic resonance imaging data sets. By tract‐based spatial statistical analyses of regional activity, patients showed decreased structural‐functional coupling in the left corticospinal tract compared to controls. This tract also displayed abnormally increased functional connectivity within the left post‐central gyrus and left putamen in PD patients. At the network level, the WM functional network showed small‐worldness in both controls and PD patients, yet it was abnormally increased in the latter group. Based on the features of the WM functional connectome, previously un‐evaluated individuals could be classified with fair accuracy (73%) and area under the curve of the receiver operating characteristics (75%). These neuroimaging findings provide direct evidence for WM functional changes in PD, which is crucial to understand the functional role of fiber tracts in the pathology of neural circuits.
Aims Adipocyte fatty acid-binding protein (A-FABP) is an adipokine implicating in various metabolic diseases. Elevated circulating levels of A-FABP correlate positively with poor prognosis in ischaemic stroke (IS) patients. No information is available concerning the role of A-FABP in the pathogenesis of IS. Experiments were designed to determine whether or not A-FABP mediates blood–brain barrier (BBB) disruption, and if so, to explore the molecular mechanisms underlying this deleterious effects. Methods and results Circulating A-FABP and its cerebral expression were increased in mice after middle cerebral artery occlusion. Genetic deletion and pharmacological inhibition of A-FABP alleviated cerebral ischaemia injury with reduced infarction volume, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was attenuated and accompanied by reduced degradation of tight junction proteins and induction of matrix metalloproteinases-9 (MMP-9). In patients with acute IS, elevated circulating A-FABP levels positively correlated with those of MMP-9 and cerebral infarct volume. Mechanistically, ischaemia-induced elevation of A-FABP selectively in peripheral blood monocyte-derived macrophages and cerebral resident microglia promoted MMP-9 transactivation by potentiating JNK/c-Jun signalling, enhancing degradation of tight junction proteins and BBB leakage. The detrimental effects of A-FABP were prevented by pharmacological inhibition of MMP-9. Conclusion A-FABP is a key mediator of cerebral ischaemia injury promoting MMP-9-mediated BBB disruption. Inhibition of A-FABP is a potential strategy to improve IS outcome.
Electroconvulsive therapy (ECT) is an effective and rapid treatment for major depressive disorder (MDD). However, the neurobiological underpinnings of ECT are still largely unknown. Recent studies have identified dysregulated brain networks in MDD. Therefore, we hypothesized that ECT may improve MDD symptoms through reorganizing these networks. To test this hypothesis, we used resting-state functional connectivity to investigate changes to the intra- and internetwork architecture of five reproducible resting-state networks: the default mode network (DMN), dorsal attention network (DAN), executive control network (CON), salience network (SAL), and sensory-motor network. Twenty-three MDD patients were assessed before and after ECT, along with 25 sex-, age-, and education-matched healthy controls. At the network level, enhanced intranetwork connectivities were found in the CON in MDD patients after ECT. Furthermore, enhanced internetwork connectivities between the DMN and SAL, and between the CON and DMN, DAN, and SAL were also identified. At the nodal level, the posterior cingulate cortex had increased connections with the left posterior cerebellum, right posterior intraparietal sulcus (rpIPS), and right anterior prefrontal cortex. The rpIPS had increased connections with the medial PFC (mPFC) and left anterior cingulate cortex. The left lateral parietal had increased connections with the dorsal mPFC (dmPFC), left anterior prefrontal cortex, and right anterior cingulate cortex. The dmPFC had increased connection with the left anterolateral prefrontal cortex. Our findings indicate that enhanced interactions in intra- and internetworks may contribute to the ECT response in MDD patients. These findings provide novel and important insights into the neurobiological mechanisms underlying ECT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.