Reactive oxygen species (ROS) are generated within activated platelets and play an important role in regulating platelet responses to collagen and collagen-mediated thrombus formation. As a major collagen receptor, platelet-specific glycoprotein (GP)VI is a member of the immunoglobulin (Ig) superfamily, with two extracellular Ig domains, a mucin domain, a transmembrane domain and a cytoplasmic tail. GPVI forms a functional complex with the Fc receptor γ-chain (FcRγ) that, following receptor dimerization, signals via an intracellular immunoreceptor tyrosine-based activation motif (ITAM), leading to rapid activation of Src family kinase signaling pathways. Our previous studies demonstrated that an unpaired thiol in the cytoplasmic tail of GPVI undergoes rapid oxidation to form GPVI homodimers in response to ligand binding, indicating an oxidative submembranous environment in platelets after GPVI stimulation. Using a redox-sensitive fluorescent dye (H2DCF-DA) in a flow cytometric assay to measure changes in intracellular ROS, we showed generation of ROS downstream of GPVI consists of two distinct phases: an initial Syk-independent burst followed by additional Syk-dependent generation. In this review, we will discuss recent findings on the regulation of platelet function by ROS, focusing on GPVI-dependent platelet activation and thrombus formation.
Ki67 is a well-known proliferation marker for the evaluation of cell proliferation. Numerous studies have indicated that Ki67 index independently predicts cancer progression. Moreover, because Ki67 is highly expressed in malignant cells but almost could not be detected in normal cells, it has become a promising target for cancer therapy. In this review, we summarize recent advances in Ki67 targeted cancer therapy. In particular, we highlight recent development on the exploitation of Ki67 promoter to drive the expression of siRNAs or therapeutic genes in cancer cells specifically. The use of Ki67 as an attractive target opens a new avenue for cancer therapy.
In addition to their hemostatic function, platelets play an important role in regulating the inflammatory response. The platelet NLRP3 inflammasome not only promotes interleukin-1β secretion, but was also found to be upregulated during platelet activation and thrombus formation in vitro. However, the role of NLRP3 in platelet function and thrombus formation in vivo remains unclear. In this study, we aimed to investigate the role of NLRP3 in platelet integrin αIIbβ3 signaling transduction. Using NLRP3−/− mice, we showed that NLRP3-deficient platelets do not have significant differences in expression of the platelet-specific adhesive receptors αIIbβ3 integrin, GPIba or GPVI; however, NLRP3−/− platelets transfused into wild-type mice resulted in prolonged tail-bleeding time and delayed arterial thrombus formation, as well as exhibiting impaired spreading on immobilized fibrinogen and defective clot retraction, concomitant with decreased phosphorylation of c-Src, Syk and PLCγ2 in response to thrombin stimulation. Interestingly, addition of exogenous recombinant interleukin-1β reversed the defect in NLRP3−/− platelet spreading and clot retraction, and restored thrombin-induced phosphorylation of c-Src/Syk/PLCγ2, whereas an anti-interleukin-1β antibody blocked spreading and clot retraction mediated by wild-type platelets. Using the direct NLRP3 inhibitor, CY-09, we demonstrated significantly reduced human platelet aggregation in response to threshold concentrations of collagen and ADP, as well as impaired clot retraction in CY-09-treated human platelets, supporting a role for NLRP3 also in regulating human platelet αIIbβ3 outside-in signaling. This study identifies a novel role for NLRP3 and interleukin-1β in platelet function, and provides a new potential link between thrombosis and inflammation, suggesting that therapies targeting NLRP3 or interleukin-1β might be beneficial for treating inflammation-associated thrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.