Background: Dengue fever is a mosquito-borne infection transmitted by Aedes aegypti and mainly found in tropical and subtropical regions worldwide. Since its re-introduction in 1986, Brazil has become a hotspot for dengue and has experienced yearly epidemics. As a notifiable infectious disease, Brazil uses a passive epidemiological surveillance system to collect and report cases; however, dengue burden is underestimated. Thus, Internet data streams may complement surveillance activities by providing real-time information in the face of reporting lags. Methods: We analyzed 19 terms related to dengue using Google Health Trends (GHT), a free-Internet data-source, and compared it with weekly dengue incidence between 2011 to 2016. We correlated GHT data with dengue incidence at the national and state-level for Brazil while using the adjusted R squared statistic as primary outcome measure (0/1). We used survey data on Internet access and variables from the official census of 2010 to identify where GHT could be useful in tracking dengue dynamics. Finally, we used a standardized volatility index on dengue incidence and developed models with different variables with the same objective. Results: From the 19 terms explored with GHT, only seven were able to consistently track dengue. From the 27 states, only 12 reported an adjusted R squared higher than 0.8; these states were distributed mainly in the Northeast, Southeast, and South of Brazil. The usefulness of GHT was explained by the logarithm of the number of Internet users in the last 3 months, the total population per state, and the standardized volatility index. Conclusions: The potential contribution of GHT in complementing traditional established surveillance strategies should be analyzed in the context of geographical resolutions smaller than countries. For Brazil, GHT implementation should be analyzed in a case-by-case basis. State variables including total population, Internet usage in the last 3 months, and the standardized volatility index could serve as indicators determining when GHT could complement dengue state level surveillance in other countries.
Dengue virus remains a significant public health challenge in Brazil, and seasonal preparation efforts are hindered by variable intra- and interseasonal dynamics. Here, we present a framework for characterizing weekly dengue activity at the Brazilian mesoregion level from 2010–2016 as time series properties that are relevant to forecasting efforts, focusing on outbreak shape, seasonal timing, and pairwise correlations in magnitude and onset. In addition, we use a combination of 18 satellite remote sensing imagery, weather, clinical, mobility, and census data streams and regression methods to identify a parsimonious set of covariates that explain each time series property. The models explained 54% of the variation in outbreak shape, 38% of seasonal onset, 33% of pairwise correlation in outbreak timing, and 10% of pairwise correlation in outbreak magnitude. Regions that have experienced longer periods of drought sensitivity, as captured by the “normalized burn ratio,” experienced less intense outbreaks, while regions with regular fluctuations in relative humidity had less regular seasonal outbreaks. Both the pairwise correlations in outbreak timing and outbreak trend between mesoresgions were best predicted by distance. Our analysis also revealed the presence of distinct geographic clusters where dengue properties tend to be spatially correlated. Forecasting models aimed at predicting the dynamics of dengue activity need to identify the most salient variables capable of contributing to accurate predictions. Our findings show that successful models may need to leverage distinct variables in different locations and be catered to a specific task, such as predicting outbreak magnitude or timing characteristics, to be useful. This advocates in favor of “adaptive models” rather than “one-size-fits-all” models. The results of this study can be applied to improving spatial hierarchical or target-focused forecasting models of dengue activity across Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.