The remarkable heterogeneity of glioblastoma, across patients and over time, is one of the main challenges in precision diagnostics and treatment planning. Non-invasive in vivo characterization of this heterogeneity using imaging could assist in understanding disease subtypes, as well as in risk-stratification and treatment planning of glioblastoma. The current study leveraged advanced imaging analytics and radiomic approaches applied to multi-parametric MRI of de novo glioblastoma patients (n = 208 discovery, n = 53 replication), and discovered three distinct and reproducible imaging subtypes of glioblastoma, with differential clinical outcome and underlying molecular characteristics, including isocitrate dehydrogenase-1 (IDH1), O6-methylguanine–DNA methyltransferase, epidermal growth factor receptor variant III (EGFRvIII), and transcriptomic subtype composition. The subtypes provided risk-stratification substantially beyond that provided by WHO classifications. Within IDH1-wildtype tumors, our subtypes revealed different survival (p < 0.001), thereby highlighting the synergistic consideration of molecular and imaging measures for prognostication. Moreover, the imaging characteristics suggest that subtype-specific treatment of peritumoral infiltrated brain tissue might be more effective than current uniform standard-of-care. Finally, our analysis found subtype-specific radiogenomic signatures of EGFRvIII-mutated tumors. The identified subtypes and their clinical and molecular correlates provide an in vivo portrait of phenotypic heterogeneity in glioblastoma, which points to the need for precision diagnostics and personalized treatment.
Objective— Recent genome-wide association studies have identified 4 SNPs on chromosome 9p21 associated with CAD (rs10757274 and rs2383206) and myocardial infarction (MI: rs2383207 and rs10757278) in White populations in Northern Europe and North America. We aimed to determine whether this locus confers significant susceptibility to CAD in a South Korean population, and thus cross-race susceptibility to CAD. Methods and Results— We performed a case-control association study with 611 unrelated CAD patients and 294 normal controls from South Korea. Allelic associations of SNPs and SNP haplotypes with CAD were evaluated. Multivariate logistic regression analysis was used to adjust effects of clinical covariates. We found that 4 SNPs on chromosome 9p21 were associated with susceptibility to CAD in a South Korean population. The association remained significant after adjusting for significant clinical covariates ( P =0.001 to 0.024). We identified one risk haplotype (GGGG; P =0.017) and one protective haplotype (AAAA; P =0.007) for development of CAD. Further analysis suggested that the SNPs probably confer susceptibility to CAD in a dominance model (covariates-adjusted P =0.001 to 0.024; OR=2.37 to 1.54). This represents the first study that expands association of these 9p21 SNPs with CAD beyond White populations. Conclusion— Chromosome 9p21 is an important susceptibility locus that confers high cross-race risk for development of CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.