Boron dipyrromethene (BODIPY) derivatives 1 and 2 consisting of donor and acceptor units with dual photoresponses to solvent polarity and luminogen aggregation are developed through taking advantage of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) processes. In nonpolar solvents, the locally excited (LE) states of the BODIPY luminogens emit intense green lights. Increasing solvent polarity brings the luminogens from the LE state to the TICT state, causing a large bathochromic shift in the emission color but a dramatic decrease in the emission efficiency. The red emission is greatly boosted by aggregate formation or AIE effect: addition of large amounts of water into the solutions of 1 and 2 in the polar solvents causes the luminogens to aggregate supramolecularly and to emit efficiently. The emission can be enhanced by increasing solvent viscosity and decreasing solution temperature, indicating that the AIE effect is caused by the restriction of the intramolecular rotations in the aggregates of the luminogens.
A major challenge for organic solar cell (OSC) research is how to minimize the tradeoff between voltage loss and charge generation. In early 2019, we reported a non-fullerene acceptor (named Y6) that can simultaneously achieve high external quantum efficiency and low voltage loss for OSC. Here, we use a combination of experimental and theoretical modeling to reveal the structure-property-performance relationships of this state-of-the-art OSC system. We find that the distinctive π–π molecular packing of Y6 not only exists in molecular single crystals but also in thin films. Importantly, such molecular packing leads to (i) the formation of delocalized and emissive excitons that enable small non-radiative voltage loss, and (ii) delocalization of electron wavefunctions at donor/acceptor interfaces that significantly reduces the Coulomb attraction between interfacial electron-hole pairs. These properties are critical in enabling highly efficient charge generation in OSC systems with negligible donor-acceptor energy offset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.