BackgroundHeart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. Applying these advances to complex healthcare data has led to the development of risk prediction models to help identify patients who would benefit most from disease management programs in an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged from a hospital admission.MethodsWe used longitudinal electronic medical record data of heart failure patients admitted within a large healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The model was validated with 10-fold cross-validation and results compared to models based on logistic regression, gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare system.ResultsData from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the model. After data processing, the final model included 3512 variables. The DUNs model had the best performance after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705 ± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital.ConclusionsDeep learning techniques performed better than other traditional techniques in developing this EMR-based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk patients and improving overall clinical outcomes.Electronic supplementary materialThe online version of this article (10.1186/s12911-018-0620-z) contains supplementary material, which is available to authorized users.
As telehealth plays an even greater role in global health care delivery, it will be increasingly important to develop a strong evidence base of successful, innovative telehealth solutions that can lead to scalable and sustainable telehealth programs. This paper has two aims: (1) to describe the challenges of promoting telehealth implementation to advance adoption and (2) to present a global research agenda for personalized telehealth within chronic disease management. Using evidence from the United States and the European Union, this paper provides a global overview of the current state of telehealth services and benefits, presents fundamental principles that must be addressed to advance the status quo, and provides a framework for current and future research initiatives within telehealth for personalized care, treatment, and prevention. A broad, multinational research agenda can provide a uniform framework for identifying and rapidly replicating best practices, while concurrently fostering global collaboration in the development and rigorous testing of new and emerging telehealth technologies. In this paper, the members of the Transatlantic Telehealth Research Network offer a 12-point research agenda for future telehealth applications within chronic disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.