The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. The Entrez system provides search and retrieval operations for most of these data from 39 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. New resources released in the past year include PubMed Data Management, RefSeq Functional Elements, genome data download, variation services API, Magic-BLAST, QuickBLASTp, and Identical Protein Groups. Resources that were updated in the past year include the genome data viewer, a human genome resources page, Gene, virus variation, OSIRIS, and PubChem. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
HAT-P-20b is a giant metal-rich exoplanet orbiting a metal-rich star. We analyze two secondary eclipses of the planet in each of the 3.6 and 4.5 μm bands of Warm Spitzer. We have developed a simple, powerful, and radically different method to correct the intra-pixel effect for Warm Spitzer data, which we call pixel-level decorrelation (PLD). PLD corrects the intra-pixel effect very effectively, but without explicitly using-or even measuring-the fluctuations in the apparent position of the stellar image. We illustrate and validate PLD using synthetic and real data and comparing the results to previous analyses. PLD can significantly reduce or eliminate red noise in Spitzer secondary eclipse photometry, even for eclipses that have proven to be intractable using other methods. Our successful PLD analysis of four HAT-P-20b eclipses shows a best-fit blackbody temperature of 1134 ± 29 K, indicating inefficient longitudinal transfer of heat, but lacking evidence for strong molecular absorption. We find sufficient evidence for variability in the 4.5 μm band that the eclipses should be monitored at that wavelength by Spitzer, and this planet should be a high priority for James Webb Space Telescope spectroscopy. All four eclipses occur about 35 minutes after orbital phase 0.5, indicating a slightly eccentric orbit. A joint fit of the eclipse and transit times with extant RV data yields e cos 0.01352 0.00057and establishes the small eccentricity of the orbit to high statistical confidence. HAT-P-20b is another excellent candidate for orbital evolution via Kozai migration or other three-body mechanisms.
Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.
) is a unique transiting hot Jupiter. It is one of very few known shortperiod planets orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler data allows us to measure the planet's occultation (secondary eclipse) and phase curve in the optical, which we combine with occultations observed by warm Spitzer at 4.5 µm and 3.6 µm and a ground-based occultation observation in the K s band (2.1 µm). We derive a day-side hemisphere temperature of 2,750±160 K as the effective temperature of a black body showing the same occultation depths. Comparing the occultation depths with one-dimensional planetary atmosphere models suggests the presence of an atmospheric temperature inversion. Our analysis shows evidence for a relatively high geometric albedo, A g = 0.33 +0.04 −0.06 . While measured with a simplistic method, a high A g is supported also by the fact that the one-dimensional atmosphere models underestimate the occultation depth in the optical. We use stellar spectra to determine the dilution, in the four wide bands where occultation was measured, due to the visual stellar binary companion 1. ′′ 15±0. ′′ 05 away. The revised stellar parameters measured using these spectra are combined with other measurements leading to revised planetary mass and radius estimates of M p = 4.94-8.09 M J and R p = 1.406±0.038 R J . Finally, we measure a Kepler mid-occultation time that is 34.0±6.9 s earlier than expected based on the mid-transit time and the delay due to light travel time, and discuss possible scenarios.
We present new 3.6 and 4.5 μm Spitzer phase curves for the highly irradiated hot Jupiter WASP-33b and the unusually dense Saturn-mass planet HD 149026b. As part of this analysis, we develop a new variant of pixel-level decorrelation that is effective at removing intrapixel sensitivity variations for long observations (>10 hr) where the position of the star can vary by a significant fraction of a pixel. Using this algorithm, we measure eclipse depths, phase amplitudes, and phase offsets for both planets at 3.6 and 4.5 μm. We use a simple toy model to show that WASP-33b's phase offset, albedo, and heat recirculation efficiency are largely similar to those of other hot Jupiters despite its very high irradiation. On the other hand, our fits for HD 149026b prefer a very high albedo. We also compare our results to predictions from general circulation models, and we find that while neither planet matches the models well, the discrepancies for HD 149026b are especially large. We speculate that this may be related to its high bulk metallicity, which could lead to enhanced atmospheric opacities and the formation of reflective cloud layers in localized regions of the atmosphere. We then place these two planets in a broader context by exploring relationships between the temperatures, albedos, heat transport efficiencies, and phase offsets of all planets with published thermal phase curves. We find a striking relationship between phase offset and irradiation temperature: the former drops with increasing temperature until around 3400 K and rises thereafter. Although some aspects of this trend are mirrored in the circulation models, there are notable differences that provide important clues for future modeling efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.