In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios.
Difficulties in selectively attending to one among several speakers have mainly been associated with the distraction caused by ignored speech. Thus, in the current study, we investigated the neural processing of ignored speech in a two-competing-speaker paradigm. For this, we recorded the participant’s brain activity using electroencephalography (EEG) to track the neural representation of the attended and ignored speech envelope. To provoke distraction, we occasionally embedded the participant’s first name in the ignored speech stream. Retrospective reports as well as the presence of a P3 component in response to the name indicate that participants noticed the occurrence of their name. As predicted, the neural representation of the ignored speech envelope increased after the name was presented therein, suggesting that the name had attracted the participant’s attention. Interestingly, in contrast to our hypothesis, the neural tracking of the attended speech envelope also increased after the name occurrence. On this account, we conclude that the name might not have primarily distracted the participants, at most for a brief duration, but that it alerted them to focus to their actual task. These observations remained robust even when the sound intensity of the ignored speech stream, and thus the sound intensity of the name, was attenuated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.