The Rosalia longicorn or Alpine longhorn (Coleoptera: Cerambycidae) is an endangered and strictly protected icon of European saproxylic biodiversity. Despite its popularity, lack of information on its demography and mobility may compromise adoption of suitable conservation strategies. The beetle experienced marked retreat from NW part of its range; its single population survives N of the Alps and W of the Carpathians. The population inhabits several small patches of old beech forest on hill-tops of the Ralska Upland, Czech Republic. We performed mark-recapture study of the population and assessed its distribution pattern. Our results demonstrate the high mobility of the beetle, including dispersal between hills (up to 1.6 km). The system is thus interconnected; it contained ∼2000 adult beetles in 2008. Estimated population densities were high, ranging between 42 and 84 adult beetles/hectare a year. The population survives at a former military-training ground despite long-term isolation and low cover of mature beech forest (∼1%). Its survival could be attributed to lack of forestry activities between the 1950s and 1990s, slow succession preventing canopy closure and undergrowth expansion, and probably also to the distribution of habitat patches on conspicuous hill-tops. In order to increase chances of the population for long term survival, we propose to stop clear-cuts of old beech forests, increase semi-open beech woodlands in areas currently covered by conifer plantations and active habitat management at inhabited sites and their wider environs.
Both species-specific traits and landscape configuration, such as area and connectivity of habitat patches plus the character of uninhabitable matrix, affect animal movements in fragmented landscapes. Difficulties with disentangling species-specific and landscape effects have obscured comparisons among species, hindering the understanding of dispersal in metapopulations. To circumvent this complication, we performed a mark-recapture study of four related nymphalid butterflies within identical landscape and in single season. The studied species were three Melitaeinae checkerspots (Euphydryas aurinia, Melitaea athalia, Melitaea diamina) and one Argynnini fritillary (Brenthis ino). Applying the Virtual Migration model revealed that (1) except for mortality within habitat, model parameters differed from those found for the studied species elsewhere; (2) the three Melitaeinae species were more akin in movement parameters than the Argynnini representative (i.e., B. ino); (3) within Melitaeinae, differences between sexes were more prominent than differences among species; (4) Melitaeinae males left natal patches more readily than females, while the opposite applied to B. ino; (5) males of M. diamina and both sexes of B. ino exhibited highest values of dispersal mortality; (6) except for females of M. diamina and both sexes of B. ino, immigration and emigration scaled with area in females but not in males. Finding (1) demonstrates that geometry of habitat network affects mobility considerably and that transferring dispersal parameters across systems is unwarranted. Still, (2-6) demonstrate that within identical networks, related species follow similar dispersal patterns, suggesting that conservation scenarios suitable for a well-studied model species would suite related species as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.