In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
BackgroundCardiometabolic risk factors comprise cardiovascular diseases and/or diabetes, and need to be evaluated in different fields.ObjectiveThe primary aim of the Tehran Cardiometabolic Genetic Study (TCGS) is to create a comprehensive genome-wide database of at least 16,000 Tehranians, who are participants of the ongoing Tehran Lipid and Glucose Study (TLGS) cohort.MethodsTCGS was designed in collaboration with the Research Institute for Endocrine Sciences and the genetic company deCODE. Participants had already been followed for over a 20-year period for major cardiometabolic-related health events including myocardial infarction, stroke, diabetes mellitus, hypertension, obesity, hyperlipidemia, and familial hypercholesterolemia.ResultsThe TCGS cohort described here comprises 17,186 (86.3%) of the 19,905 TLGS participants who provided a baseline blood sample that was adequate for plasma and deoxyribonucleic acid analysis. This study is comprised of 849 individuals and 3109 families with at least one member having genotype information. Finally, 5977 males and 7422 females with the total genotyping rate of 0.9854 were genotyped with HumanOmniExpress-24-v1-0 bead chips (containing 649,932 single-nucleotide polymorphism loci with an average mean distance of 4 kilobases).ConclusionsInvestigations conducted within the TCGS will seek to identify relevant patterns of genetic polymorphisms that could be related to cardiometabolic risk factors in participants from Tehran. By linking genome-wide data to the existing databank of TLGS participants, which includes comprehensive behavioral, biochemical, and clinical data on each participant since cohort inception in 1999, the TCGS will also allow exploration of gene-gene and gene-environment interactions as they relate to disease status.
The genetic variations among individuals are one of the notable factors determining disease severity and drug response. Nowadays, COVID-19 pandemic has been adversely affecting many aspects of human life. We used the Tehran Cardio-Metabolic Genetic Study (TCGS) data that is an ongoing genetic study including the whole-genome sequencing of 1200 individuals and chip genotyping of more than 15,000 participants. Here, the effect of ACE2 variations by focusing on the receptor-binding site of SARS-CoV-2 and ACE2 cleavage by TMPRSS2 protease were investigated through simulations study. After analyzing TCGS data, 570 genetic variations on the ACE2 gene, including single nucleotide polymorphisms (SNP) and insertion/deletion (INDEL) were detected. Interestingly, two observed missense variants, K26R and S331F, which only the first one was previously reported, can reduce the receptor affinity for the viral Spike protein. Moreover, our bioinformatics simulation of 3D structures and docking of proteins explains important details of ACE2-Spike and ACE2-TMPRSS2 interactions, especially the critical role of Arg652 of ACE2 for protease function of TMPRSS2 was uncovered. As our results show that the genetic variation of ACE2 can at least influence the affinity of this receptor to its partners, we need to consider the genetic variations on ACE2 as well as other genes in the pathways that contribute to the pathogenesis of COVID-19 for designing efficient drugs and vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.