Two different phases of alumina (Al2O3) nanoparticles (γ-alumina and α-alumina) have successfully been synthesized by using a sol-gel method. During the process a mixture of aluminum nitrate and citric acid (C/N=0.5) was heated at 60°C followed by 80°C until a gel was formed. The amorphous gel structure then was dried and sintered from 600°C to 1200°C. From the X-ray diffraction (XRD) analysis, crystalline structure of γ-alumina started to form at 800°C with average crystallite size of 11.5 nm, followed by the formation of the mixture phase of γ-alumina and α-alumina at 1000°C. The transformation from γ- to α-alumina occured at 1100°C of sintering temperature and above with the average crystallite size of 49 nm. The efficiency of the synthesized alumina nanoparticles as an adsorbents was tested by immersing the powder into the copper ions solution. The percentage of the copper removal was measured by using atomic absorption spectroscopy (AAS). It was found that, the efficiency of the alumina nanoparticles as an adsorbent was not depending on their phases, but might due to the increased of the particle size at higher sintering temperature. The highest percentage of removal 82.1% was obtained when using the alumina sintered at 1200°C.
Titanium (IV) isopropoxide (TTIP) was used to synthesize GO/TiO2 thin films using a sol-gel spin-coating method onto a glass substrate, undergoing an heat tretment at 350 °C. Several amounts of graphene oxide (GO) (0-20mg) were weighed into a sol solution of TiO2 to produce GO/TiO2 thin films. The thin film samples were characterized by X-ray diffraction (XRD) to analyze the samples' phase and by scanning electron microscopy (SEM) to analyze the samples' microstructure. Physical testing such as water contact angle (WCA) was analyzed using an optical microscope with J-Image software. In contrast, the optical band gap and photodegradation of methylene blue under sunlight irradiation of the thin film was analyzed using UV-VIS spectrophotometry. GO5 thin film sample showed low-intensity anatase phase formation, where the microstructure revealed a larger surface area with the addition of GO. WCA reveals that GO/TiO2 thin film exhibits super hydrophilic properties where the angle decreases from 37.83° to 4.11°. The optical result shows that GO has improved the absorption edges by expanding into visible regions. Moreover, due to the existence of GO 3.30 eV band gap energy of TiO2 decreases from to 3.18 eV obtained by GO5. The improved adsorption edge allows Ti 3+ , O2 and interstitial states to be formed in low valence states with energy underneath than in the TiO2 band gap. Therefore, the photodegradation of methylene blue (MB) dye increases from 48 % to 59 % in the GO/TiO2 thin film.
Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
Energy saving in building technology is among the most critical problems in the world. Thus it is a need to develop sustainable alternatives to conventional concrete utilizing more environmental friendly materials. One of the possibilities to work out is the massive usage of industrial wastes like ground granulated blast furnace slag (GGBS) to turn them to useful environmental friendly and technologically advantageous cementitious materials. In this study, ground granulated blast furnace slag (GGBS) is used to produce of alkali activated slag (AAS) mortar with the effect of alkaline activator concentration. Alkali activated slag (AAS) mortar is accelerated using alkaline solution of sodium silicate mixed with sodium hydroxide. The fixed ratio of sodium silicate to sodium hydroxide is 1.7 and the concentration of sodium hydroxide is varied from 6M to 12M. Concentration of 10M NaOH promotes the best properties of mortar by achieving the greatest compressive strength. Substitution of mineral admixture also influences strength performance of AAS mortars. The mortar with 20% calcium carbonate demonstrates the maximum compressive strength. The used of alkaline activation system is the best method to prepare industrial byproduct concrete. Moreover, alkali activated product itself gains superior properties which lead to the system become the most interesting method to produce sustainable concrete.
Ag/TiO2thin films were prepared via sol-gel spin coating method. Structural, surface morphology and optical properties were investigated with the addition of two different amount of silver (Ag). X-ray diffraction pattern shows the sample with pure TiO2, the only phase presence was brookite TiO2. When the Ag content added into the solution, the phase existed for the samples with TiO2doped 0.5g Ag and TiO2doped 1.0g Ag were anatase TiO2with no peak corresponds to Ag phase. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films were annealed at 450 °C and it shows non-uniform films. The films have a large flaky and cracks film which was attributed to surface tension between the film and the air during the drying process. When the solution of sol was added with Ag content, it shows the porous structure with flaky-crack films. With the increasing of the Ag content from 0.5g to 1.0g, the structure is more porous and it is good for the photocatalytic activity. The UV-Vis spectra shows that the film exhibits a low absorbance which was due to the substrate is inhomogeneously covered by the flaky-crack films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.