In an unprecedented response to the rapid decline in wild tiger populations, the Heads of Government of the 13 tiger range countries endorsed the St. Petersburg Declaration in November 2010, pledging to double the wild tiger population. We conducted a landscape analysis of tiger habitat to determine if a recovery of such magnitude is possible. The reserves in 20 priority tiger landscapes can potentially support >10,000 tigers, almost thrice the current estimate. However, most core reserves where tigers breed are small and land-use change in rapidly developing Asia threatens to increase reserve and population isolation. Maintaining population viability and resilience will depend upon a landscape approach to manage tigers as metapopulations. Thus, both site-level protection and landscape-scale interventions to secure habitat corridors are simultaneous imperatives. Co-benefits, such as payment schemes for carbon and other ecosystem services, should be employed as strategies to mainstream landscape conservation in tiger habitat into development processes.
Aim Biodiversity loss is a major driver of ecosystem change, yet the ecological data required to detect and mitigate losses are often lacking. Recently, camera trap surveys have been suggested as a method for sampling local wildlife communities, because these observations can be collated into a global monitoring network. To demonstrate the potential of camera traps for global monitoring, we assembled data from multiple local camera trap surveys to evaluate the interchange between fine‐ and broad‐scale processes impacting mammalian carnivore communities. Location Argentina, Belize, Botswana, Canada, Indonesia, Iran, Madagascar, Nepal, Norway, Senegal, South Africa, and the U.S.A. Methods We gathered camera trap data, totalling > 100,000 trap nights, from across five continents. To analyse local and species‐specific responses to anthropogenic and environmental variables, we fitted multispecies occurrence models to each study area. To analyse global‐level responses, we then fitted a multispecies, multi‐area occurrence model. Results We recorded 4,805 detections of 96 mammalian carnivore species photographed across 1,714 camera stations located in 12 countries. At the global level, our models revealed that carnivore richness and occupancy within study areas was positively associated with prey availability. Occupancy within study areas also tended to increase with greater protection and greater distances to roads. The strength of these relationships, however, differed among countries. Main conclusions We developed a research framework for leveraging global camera trap data to evaluate patterns of mammalian carnivore occurrence and richness across multiple spatial scales. Our research highlights the importance of intact prey populations and protected areas in conserving carnivore communities. Our research also highlights the potential of camera traps for monitoring wildlife communities and provides a case study for how this can be achieved on a global scale. We encourage greater integration and standardization among camera trap studies worldwide, which would help inform effective conservation planning for wildlife populations both locally and globally.
The composition of local mammalian carnivore communities has far-reaching effects on terrestrial ecosystems worldwide. To better understand how carnivore communities are structured, we analysed camera trap data for 108 087 trap days across 12 countries spanning five continents. We estimate local probabilities of co-occurrence among 768 species pairs from the order Carnivora and evaluate how shared ecological traits correlate with probabilities of co-occurrence. Within individual study areas, species pairs co-occurred more frequently than expected at random. Co-occurrence probabilities were greatest for species pairs that shared ecological traits including similar body size, temporal activity pattern and diet. However, co-occurrence decreased as compared to other species pairs when the pair included a large-bodied carnivore. Our results suggest that a combination of shared traits and top-down regulation by large carnivores shape local carnivore communities globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.