Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a wide phenotypic range, often affecting personality and communication. Previous voxel-based morphometry (VBM) studies of ASD have identified both gray-and white-matter volume changes. However, the cerebral cortex is a 2-D sheet with a highly folded and curved geometry, which VBM cannot directly measure. Surface-based morphometry (SBM) has the advantage of being able to measure cortical surface features, such as thickness. The goals of this study were twofold: to construct diagnostic models for ASD, based on regional thickness measurements extracted from SBM; and to compare these models to diagnostic models based on volumetric morphometry. Our study included 22 subjects with ASD (mean age 9.2 ± 2.1 years) and 16 volunteer controls (mean age 10.0 ± 1.9 years). Using SBM, we obtained regional cortical thicknesses for 66 brain structures for each subject. In addition, we obtained volumes for the same 66 structures for these subjects. To generate diagnostic models, we employed four machine-learning techniques: support vector machines (SVMs), multilayer perceptrons (MLPs), functional trees (FTs), and logistic model trees (LMTs). We found that thickness-based diagnostic models were superior to those based on regional volumes. For thickness-based classification, LMT achieved the best classification performance, with accuracy = 87%, area under the receiver operating characteristic (ROC) curve (AUC) = 0.93, sensitivity = 95%, and specificity = 75%. For volumebased classification, LMT achieved the highest accuracy, with accuracy = 74%, AUC = 0.77, sensitivity = 77%, and specificity = 69%. The thickness-based diagnostic model generated by LMT included 7 structures. Relative to controls, children with ASD had decreased cortical thickness in the left and right pars triangularis, left medial orbitofrontal gyrus, left parahippocampal gyrus, and left frontal pole, and increased cortical thickness in the left caudal anterior cingulate and left precuneus. Overall, thickness-based classification outperformed volume-based classification across a variety of classification methods.Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships in adolescents and adults with ASD, literature is still limited in information about the neurobiology of ASD in the early age of life. Brain images of 50 toddlers with ASD and 28 age, gender, and developmental quotient matched toddlers with developmental delay (DD) (control group) between ages 2 and 3 years were captured using combined magnetic resonance-based structural imaging and diffusion tensor imaging (DTI). Structural magnetic resonance imaging was applied to assess overall gray matter (GM) and white matter (WM) volumes, and regional alterations were assessed by voxel-based morphometry. DTI was used to investigate the white matter tract integrity. Compared with DD, significant increases were observed in ASD, primarily in global GM and WM volumes and in right superior temporal gyrus regional GM and WM volumes. Higher fractional anisotropy value was also observed in the corpus callosum, posterior cingulate cortex, and limbic lobes of ASD. The converging findings of structural and white matter abnormalities in ASD suggest that alterations in neural-anatomy of different brain regions may be involved in behavioral and cognitive deficits associated with ASD, especially in an early age of 2–3 years old toddlers.
BackgroundResponse inhibition, an important domain of executive function (EF), involves the ability to suppress irrelevant or interfering information and impulses. Previous studies have shown impairment of response inhibition in high functioning autism (HFA) and attention deficit hyperactivity disorder (ADHD), but more recent findings have been inconsistent. To date, almost no studies have been conducted using functional imaging techniques to directly compare inhibitory control between children with HFA and those with ADHD.MethodNineteen children with HFA, 16 age- and intelligence quotient (IQ)-matched children with ADHD, and 16 typically developing (TD) children were imaged using functional near-infrared spectroscopy (NIRS) while performing Go/No-go and Stroop tasks.ResultsCompared with the TD group, children in both the HFA and ADHD groups took more time to respond during the No-go blocks, with reaction time longest for HFA and shortest for TD. Children in the HFA and ADHD groups also made a greater number of reaction errors in the No-go blocks than those in the TD group. During the Stroop task, there were no significant differences between these three groups in reaction time and omission errors. Both the HFA and ADHD groups showed a higher level of inactivation in the right prefrontal cortex (PFC) during the No-go blocks, relative to the TD group. However, no significant differences were found between groups in the levels of oxyhemoglobin concentration in the PFC during the Stroop task.ConclusionFunctional brain imaging using NIRS showed reduced activation in the right PFC in children with HFA or ADHD during an inhibition task, indicating that inhibitory dysfunction is a shared feature of both HFA and ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.