The autonomic nervous system maintains homeostasis through its sympathetic and parasympathetic divisions. During infection, cells of the immune system release cytokines and other mediators that cause fever, hypotension, and tissue injury. Although the effect of cytokines on the nervous system has been known for decades, only recently has it become evident that the autonomic nervous system, in turn, regulates cytokine production through neural pathways. We have previously shown that efferent vagus nerve signals regulate cytokine production through the nicotinic acetylcholine receptor subunit ␣7, a mechanism termed ''the cholinergic antiinflammatory pathway.'' Here, we show that vagus nerve stimulation during endotoxemia specifically attenuates TNF production by spleen macrophages in the red pulp and the marginal zone. Administration of nicotine, a pharmacological agonist of ␣7, attenuated TNF immunoreactivity in these specific macrophage subpopulations. Synaptophysin-positive nerve endings were observed in close apposition to red pulp macrophages, but they do not express choline acetyltransferase or vesicular acetylcholine transporter. Surgical ablation of the splenic nerve and catecholamine depletion by reserpine indicate that these nerves are catecholaminergic and are required for functional inhibition of TNF production by vagus nerve stimulation. Thus, the cholinergic antiinflammatory pathway regulates TNF production in discrete macrophage populations via two serially connected neurons: one preganglionic, originating in the dorsal motor nucleus of the vagus nerve, and the second postganglionic, originating in the celiacsuperior mesenteric plexus, and projecting in the splenic nerve.brain ͉ cytokine ͉ innate ͉ spleen ͉ vagus T he autonomic nervous system is divided into two major branches based on anatomy and function. These divisions, sympathetic and parasympathetic, control organ function through a set of two serially connected neurons, the first of which is located in the CNS and the second in the peripheral ganglia. Typically, parasympathetic neurons originate in the brainstem medulla and sacral portion of the spinal cord, and the ganglia are located close to or within the innervated organ. Sympathetic neurons originate in the thoracic and lumbar portion of the spinal cord, and the ganglia are situated close to the spinal cord.
IMPORTANCEHospitalized patients with COVID-19 are at risk for venous and arterial thromboembolism and death. Optimal thromboprophylaxis dosing in high-risk patients is unknown.OBJECTIVE To evaluate the effects of therapeutic-dose low-molecular-weight heparin (LMWH) vs institutional standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19. DESIGN, SETTING, AND PARTICIPANTSThe HEP-COVID multicenter randomized clinical trial recruited hospitalized adult patients with COVID-19 with D-dimer levels more than 4 times the upper limit of normal or sepsis-induced coagulopathy score of 4 or greater from May 8, 2020, through May 14, 2021, at 12 academic centers in the US.INTERVENTIONS Patients were randomized to institutional standard prophylactic or intermediate-dose LMWH or unfractionated heparin vs therapeutic-dose enoxaparin, 1 mg/kg subcutaneous, twice daily if creatinine clearance was 30 mL/min/1.73 m 2 or greater (0.5 mg/kg twice daily if creatinine clearance was 15-29 mL/min/1.73 m 2 ) throughout hospitalization. Patients were stratified at the time of randomization based on intensive care unit (ICU) or non-ICU status. MAIN OUTCOMES AND MEASURESThe primary efficacy outcome was venous thromboembolism (VTE), arterial thromboembolism (ATE), or death from any cause, and the principal safety outcome was major bleeding at 30 ± 2 days. Data were collected and adjudicated locally by blinded investigators via imaging, laboratory, and health record data. RESULTSOf 257 patients randomized, 253 were included in the analysis (mean [SD] age, 66.7 [14.0] years; men, 136 [53.8%]; women, 117 [46.2%]); 249 patients (98.4%) met inclusion criteria based on D-dimer elevation and 83 patients (32.8%) were stratified as ICU-level care. There were 124 patients (49%) in the standard-dose vs 129 patients (51%) in the therapeutic-dose group. The primary efficacy outcome was met in 52 of 124 patients (41.9%) (28.2% VTE, 3.2% ATE, 25.0% death) with standard-dose heparins vs 37 of 129 patients (28.7%) (11.7% VTE, 3.2% ATE, 19.4% death) with therapeutic-dose LMWH (relative risk [RR], 0.68; 95% CI, 0.49-0.96; P = .03), including a reduction in thromboembolism (29.0% vs 10.9%; RR, 0.37; 95% CI, 0.21-0.66; P < .001). The incidence of major bleeding was 1.6% with standard-dose vs 4.7% with therapeutic-dose heparins (RR, 2.88; 95% CI, 0.59-14.02; P = .17). The primary efficacy outcome was reduced in non-ICU patients (36.1% vs 16.7%; RR, 0.46; 95% CI, 0.27-0.81; P = .004) but not ICU patients (55.3% vs 51.1%; RR, 0.92; 95% CI, 0.62-1.39; P = .71). CONCLUSIONS AND RELEVANCEIn this randomized clinical trial, therapeutic-dose LMWH reduced major thromboembolism and death compared with institutional standard heparin thromboprophylaxis among inpatients with COVID-19 with very elevated D-dimer levels. The treatment effect was not seen in ICU patients.
The innate immune system protects against infection and tissue injury through the specialized organs of the reticuloendothelial system, including the lungs, liver, and spleen. The central nervous system regulates innate immune responses via the vagus nerve, a mechanism termed the cholinergic antiinflammatory pathway. Vagus nerve stimulation inhibits proinflammatory cytokine production by signaling through the α7 nicotinic acetylcholine receptor subunit. Previously, the functional relationship between the cholinergic antiinflammatory pathway and the reticuloendothelial system was unknown. Here we show that vagus nerve stimulation fails to inhibit tumor necrosis factor (TNF) production in splenectomized animals during lethal endotoxemia. Selective lesioning of the common celiac nerve abolishes TNF suppression by vagus nerve stimulation, suggesting that the cholinergic pathway is functionally hard wired to the spleen via this branch of the vagus nerve. Administration of nicotine, an α7 agonist that mimics vagus nerve stimulation, increases proinflammatory cytokine production and lethality from polymicrobial sepsis in splenectomized mice, indicating that the spleen is critical to the protective response of the cholinergic pathway. These results reveal a specific, physiological connection between the nervous and innate immune systems that may be exploited through either electrical vagus nerve stimulation or administration of α7 agonists to inhibit proinflammatory cytokine production during infection and tissue injury.
Severe sepsis, a lethal syndrome after infection or injury, is the third leading cause of mortality in the United States. The pathogenesis of severe sepsis is characterized by organ damage and accumulation of apoptotic lymphocytes in the spleen, thymus, and other organs. To examine the potential causal relationships of apoptosis to organ damage, we administered Z-VAD-FMK, a broad-spectrum caspase inhibitor, to mice with sepsis. We found that Z-VAD-FMK–treated septic mice had decreased levels of high mobility group box 1 (HMGB1), a critical cytokine mediator of organ damage in severe sepsis, and suppressed apoptosis in the spleen and thymus. In vitro, apoptotic cells activate macrophages to release HMGB1. Monoclonal antibodies against HMGB1 conferred protection against organ damage but did not prevent the accumulation of apoptotic cells in the spleen. Thus, our data indicate that HMGB1 production is downstream of apoptosis on the final common pathway to organ damage in severe sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.