Efforts to identify a suitable follow-on compound to razaxaban (compound 4) focused on modification of the carboxamido linker to eliminate potential in vivo hydrolysis to a primary aniline. Cyclization of the carboxamido linker to the novel bicyclic tetrahydropyrazolopyridinone scaffold retained the potent fXa binding activity. Exceptional potency of the series prompted an investigation of the neutral P1 moieties that resulted in the identification of the p-methoxyphenyl P1, which retained factor Xa binding affinity and good oral bioavailability. Further optimization of the C-3 pyrazole position and replacement of the terminal P4 ring with a neutral heterocycle culminated in the discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, compound 40). Compound 40 exhibits a high degree of fXa potency, selectivity, and efficacy and has an improved pharmacokinetic profile relative to 4.
Factor Xa (fXa) plays a critical role in the coagulation cascade, serving as the point of convergence of the intrinsic and extrinsic pathways. Together with nonenzymatic cofactor Va and Ca2+ on the phospholipid surface of platelets or endothelial cells, factor Xa forms the prothrombinase complex, which is responsible for the proteolysis of prothrombin to catalytically active thrombin. Thrombin, in turn, catalyzes the cleavage of fibrinogen to fibrin, thus initiating a process that ultimately leads to clot formation. Recently, we reported on a series of isoxazoline and isoxazole monobasic noncovalent inhibitors of factor Xa which show good potency in animal models of thrombosis. In this paper, we wish to report on the optimization of the heterocyclic core, which ultimately led to the discovery of a novel pyrazole SN429 (2b; fXa K(i) = 13 pM). We also report on our efforts to improve the oral bioavailability and pharmacokinetic profile of this series while maintaining subnanomolar potency and in vitro selectivity. This was achieved by replacing the highly basic benzamidine P1 with a less basic benzylamine moiety. Further optimization of the pyrazole core substitution and the biphenyl P4 culminated in the discovery of DPC423 (17h), a highly potent, selective, and orally active factor Xa inhibitor which was chosen for clinical development.
Using a high-throughput screening strategy, a series of 1-aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-ones was identified that inhibit the cyclin-dependent kinase (CDK) 4/cyclin D1 complex-mediated phosphorylation of a protein substrate with IC(50)s in the low micromolar range. On the basis of preliminary structure-activity relationships (SAR), a model was proposed in which these inhibitors occupy the ATP-binding site of the enzyme, forming critical hydrogen bonds to the same residue (Val96) to which the amino group in ATP is presumed to bind. X-ray diffraction studies on a later derivative bound to CDK2 support this binding mode. Iterative cycles of synthesis and screening lead to a novel series of potent, CDK2-selective 6-(arylmethyl)pyrazolopyrimidinones. Placement of a hydrogen-bond donor in the meta-position on the 6-arylmethyl group resulted in approximately 100-fold increases in CDK4 affinity, giving ligands that were equipotent inhibitors of CDK4 and CDK2. These compounds exhibit antiproliferative effects in the NCI HCT116 and other cell lines. The potency of these antiproliferative effects is enhanced in anilide derivatives and translates into tumor growth inhibition in a mouse xenograft model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.